Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2008 Jan 14;60(2):277-85.
doi: 10.1016/j.addr.2007.08.031. Epub 2007 Oct 9.

Cell sheet engineering for heart tissue repair

Affiliations
Review

Cell sheet engineering for heart tissue repair

Shinako Masuda et al. Adv Drug Deliv Rev. .

Abstract

Recently, myocardial tissue engineering has emerged as one of the most promising therapies for patients suffering from severe heart failure. Nevertheless, conventional methods in tissue engineering involving the seeding of cells into biodegradable scaffolds have intrinsic shortcomings, such as inflammatory reactions and fibrous tissue formation caused by scaffold degradation. On the other hand, we have developed cell sheet engineering as scaffoldless tissue engineering, and applied it for myocardial tissue engineering. Using temperature-responsive culture surfaces, cells can be harvested as intact sheets and cell-dense thick tissues are constructed by layering these cell sheets. Myocardial cell sheets non-invasively harvested from temperature-responsive culture surfaces are successfully layered, resulting in electrically communicative 3-dimensional (3-D) cardiac constructs. Transplantation of cell sheets onto damaged hearts improved heart function in several animal models. In this review, we summarize the development of myocardial tissue engineering using cell sheets harvested from temperature-responsive culture surfaces and discuss about future views.

PubMed Disclaimer

Similar articles

Cited by

Publication types