Threshold and beyond: modeling the intensity dependence of auditory responses
- PMID: 18008105
- PMCID: PMC2536805
- DOI: 10.1007/s10162-007-0102-y
Threshold and beyond: modeling the intensity dependence of auditory responses
Abstract
In many studies of auditory-evoked responses to low-intensity sounds, the response amplitude appears to increase roughly linearly with the sound level in decibels (dB), corresponding to a logarithmic intensity dependence. But the auditory system is assumed to be linear in the low-intensity limit. The goal of this study was to resolve the seeming contradiction. Based on assumptions about the rate-intensity functions of single auditory-nerve fibers and the pattern of cochlear excitation caused by a tone, a model for the gross response of the population of auditory nerve fibers was developed. In accordance with signal detection theory, the model denies the existence of a threshold. This implies that regarding the detection of a significant stimulus-related effect, a reduction in sound intensity can always be compensated for by increasing the measurement time, at least in theory. The model suggests that the gross response is proportional to intensity when the latter is low (range I), and a linear function of sound level at higher intensities (range III). For intensities in between, it is concluded that noisy experimental data may provide seemingly irrefutable evidence of a linear dependence on sound pressure (range II). In view of the small response amplitudes that are to be expected for intensity range I, direct observation of the predicted proportionality with intensity will generally be a challenging task for an experimenter. Although the model was developed for the auditory nerve, the basic conclusions are probably valid for higher levels of the auditory system, too, and might help to improve models for loudness at threshold.
Figures












Similar articles
-
Frequency selectivity of single cochlear-nerve fibers based on the temporal response pattern to two-tone signals.J Acoust Soc Am. 1986 Apr;79(4):1010-9. doi: 10.1121/1.393373. J Acoust Soc Am. 1986. PMID: 3700856
-
Cochlear nerve fiber responses to amplitude-modulated stimuli: variations with spontaneous rate and other response characteristics.J Neurophysiol. 1993 Jul;70(1):370-86. doi: 10.1152/jn.1993.70.1.370. J Neurophysiol. 1993. PMID: 8395584
-
Frequency selectivity in the auditory periphery: similarities between damaged and developing ears.Am J Otolaryngol. 1990 Jan-Feb;11(1):23-32. doi: 10.1016/0196-0709(90)90166-s. Am J Otolaryngol. 1990. PMID: 2321707
-
Sound Coding in the Auditory Nerve: From Single Fiber Activity to Cochlear Mass Potentials in Gerbils.Neuroscience. 2019 May 21;407:83-92. doi: 10.1016/j.neuroscience.2018.10.010. Epub 2018 Oct 17. Neuroscience. 2019. PMID: 30342201 Review.
-
Audibility, speech perception and processing of temporal cues in ribbon synaptic disorders due to OTOF mutations.Hear Res. 2015 Dec;330(Pt B):200-12. doi: 10.1016/j.heares.2015.07.007. Epub 2015 Jul 15. Hear Res. 2015. PMID: 26188103 Review.
Cited by
-
Auditory brainstem response at the detection limit.J Assoc Res Otolaryngol. 2008 Dec;9(4):521-31. doi: 10.1007/s10162-008-0131-1. Epub 2008 Aug 14. J Assoc Res Otolaryngol. 2008. PMID: 18704580 Free PMC article.
-
An improved model for the rate-level functions of auditory-nerve fibers.J Neurosci. 2011 Oct 26;31(43):15424-37. doi: 10.1523/JNEUROSCI.1638-11.2011. J Neurosci. 2011. PMID: 22031889 Free PMC article.
References
-
- Abramowitz M, Stegun IA. Handbook of Mathematical Functions Dover, New York, 1965.
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1121/1.408182', 'is_inner': False, 'url': 'https://doi.org/10.1121/1.408182'}, {'type': 'PubMed', 'value': '8370887', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/8370887/'}]}
- Allen JB, Fahey PF. A second cochlear-frequency map that correlates distortion product and neural tuning measurements. J. Acoust. Soc. Am. 94, 809–816, 1993. - PubMed
-
- None
- Antoli-Candela F, Kiang NY. Unit activity underlying the N1 potential. In: Naunton RF and Fernandez C (eds) Evoked Electrical Activity in The Auditory Nervous System. New York, Academic, pp. 165–191, 1978.
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1007/s101620010084', 'is_inner': False, 'url': 'https://doi.org/10.1007/s101620010084'}, {'type': 'PMC', 'value': 'PMC3202402', 'is_inner': False, 'url': 'https://pmc.ncbi.nlm.nih.gov/articles/PMC3202402/'}, {'type': 'PubMed', 'value': '12162363', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/12162363/'}]}
- Buus S, Florentine M. Growth of loudness in listeners with cochlear hearing losses: recruitment reconsidered. J. Assoc. Res. Otolaryngol. 3:120–39, 2002. - PMC - PubMed
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1121/1.423295', 'is_inner': False, 'url': 'https://doi.org/10.1121/1.423295'}, {'type': 'PubMed', 'value': '9670532', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/9670532/'}]}
- Buus S, Musch H, Florentine M. On loudness at threshold. J. Acoust. Soc. Am. 104:399–410, 1998. - PubMed
MeSH terms
LinkOut - more resources
Full Text Sources
Miscellaneous