Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Sep;7(9):3344-7.
doi: 10.1166/jnn.2007.915.

Nanosurface-confined nucleation and patterned growth of Pt and TiO2

Affiliations

Nanosurface-confined nucleation and patterned growth of Pt and TiO2

Seung H Huh et al. J Nanosci Nanotechnol. 2007 Sep.

Abstract

The nanosurface-confined nucleation and growth processes of Pt and TiO2 were investigated when Pt was sputter deposited and TiO2 was sol-gel coated on a unique surface-designed substrate. The substrate was an anodic aluminum oxide (AAO) film with self-assembled grouped nanopores (SGNPs). The SGNPs gave rise to unique nucleation sites comprising very small-sized boundaries and nanopores. Pt sputter deposition onto the SGNPs showed restricted growth of nanogranules. The TiO2 sol-gel coating onto the SGNPs resulted in unique formations of nanopore and network structures. The unique nucleation phenomena of Pt and TiO2 on the nanometer-sized surfaces are explained by a combination of two effects: confinement of the degree of freedom at the nucleation sites and growth direction. This is different from conventional surface nucleation that yields the growth of islands, layer-by-layer deposition, and epitaxy.

PubMed Disclaimer

Publication types