Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008;28(10):1955-62.
doi: 10.1016/j.wasman.2007.09.007. Epub 2007 Nov 26.

Characterization of alkali-activated thermally treated incinerator bottom ash

Affiliations

Characterization of alkali-activated thermally treated incinerator bottom ash

X C Qiao et al. Waste Manag. 2008.

Abstract

The fine fraction (<14 mm) of incinerator bottom ash (IBA) obtained from a UK energy from waste plant has been milled and thermally treated at 600, 700, 800 and 880 degrees C. Treated materials have been activated with Ca(OH)(2) (10 wt%) and the setting times and compressive strengths at different curing times measured. In addition to decomposition of CaCO(3) to CaO, thermal treatment increases the content of gehlenite (Ca(2)Al(2)SiO(7)), wollastonite (CaSiO(3)) and mayenite (Ca(12)Al(14)O(33)). Thermally treated samples were significantly more reactive than milled IBA and heating to 700 degrees C produced a material which rapidly set. Silica, gehlenite and wollastonite were the main crystalline phases present in hydrated samples and a mixed sulphate-carbonate AFm-type phase (Ca(4)Al(2)O(6)(CO(3))(0.67)(SO(3))(0.33).11H(2)O) formed. Significant volumes of gas were generated during curing and this produced a macro-porous microstructure that limited strength to 2.8 MPa. The new materials may have potential for use as controlled low-strength materials.

PubMed Disclaimer

Publication types

LinkOut - more resources