Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Dec;24(6):625-30.
doi: 10.1016/j.bioeng.2007.10.004. Epub 2007 Oct 23.

Development of a heat shock inducible and inheritable RNAi system in silkworm

Affiliations

Development of a heat shock inducible and inheritable RNAi system in silkworm

Hongjiu Dai et al. Biomol Eng. 2007 Dec.

Abstract

A heat shock inducible and inheritable RNA interference (RNAi) system was developed in the silkworm (Bombyx mori). RNAi transgenic silkworms were generated by injecting silkworm eggs with a piggyBac transposon plasmid carrying RNAi sequence against target gene driven by the Drosophila heat shock protein 70 (HSP70) promoter and the helper plasmid expressing piggyBac transposase. The transgenic EGFP gene and the endogenous eclosion hormone (EH) gene were chosen respectively as the target genes. In the RNAi transgenic silkworms, heat shock at 42 degrees C significantly and specifically reduced the expression of EGFP or EH gene in silkworms according to the corresponding RNAi targeting sequence but not in silkworms with the irrelevant RNAi sequence demonstrating the efficiency and specificity of the RNAi effect. Heat shock in the pupal stage hampered pupal-adult eclosion and reduced egg fertility in EH RNAi transgenic silkworms but not in the wild type or EGFP RNAi transgenic silkworms. The establishment of this heat inducible and inheritable conditional RNA interference system in silkworms provided an approach for the first time to dissect the functions of target genes in silkworms at different stages.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources