Insulin signaling effects on memory and mood
- PMID: 18023616
- PMCID: PMC2193628
- DOI: 10.1016/j.coph.2007.10.012
Insulin signaling effects on memory and mood
Abstract
The escalating obesity/diabetes epidemic is an important health-care issue that has crucial socio-economic ramifications. The complications of diabetes/obesity phenotypes extend to the central nervous system (CNS), including the hippocampus, a brain region that is particularly vulnerable to hyperglycemia and insulin resistance. Deficits in hippocampal synaptic plasticity observed in diabetes ultimately have deleterious consequences upon cognitive function. For example, recent studies using brain imaging technologies have identified cerebral atrophy in diabetic patients, suggesting that the neuroanatomical changes observed in experimental models of diabetes may accurately reflect what is occurring in the clinical setting. Deficits in insulin receptor (IR) signaling and impairments in hypothalamic-pituitary-adrenal (HPA) axis function also contribute to the neurological complications of diabetes phenotypes. The pathophysiological similarities between diabetes and stress-related mood disorders suggest that common mechanistic mediators may be involved in the etiology and progression of the neurological complications of these disorders. When combined with the accumulating evidence from pre-clinical models, these data support the hypothesis that a long-term consequence of diabetes/obesity phenotypes is accelerated brain aging that results in neuropsychological deficits and increased vulnerability to co-morbidities such as depressive illness.
References
-
-
Ogden CL, Carroll MD, Curtin LR, McDowell MA, Tabak CJ, Flegal KM. Prevalence of overweight and obesity in the United States, 1999-2004. JAMA. 2006;295:1549–1555. The National Health and Nutrition Examination Survey (NHANES) revealed that increasing numbers of children and adolescence may be categorized as overweight. Additionally, greater than 60% of the adult US population may be defined as either overweight or obese.
-
-
- Kamal A, Biessels G-J, Duis SEJ, Gispen WH. Learning and hippocampal synaptic plasticity in streptozotocin-diabetic rats: interaction of diabetes and ageing. Diabetologia. 2000;43:500–506. - PubMed
-
- Grillo CA, Piroli GG, Wood GE, Reznikov LR, McEwen BS, Reagan LP. Immunocytochemical analysis of synaptic proteins provides new insights into diabetes-mediated plasticity in the rat hippocampus. Neuroscience. 2005;136:477–486. - PubMed
-
- Kim HB, Jang MH, Shin MC, Lim BV, Kim YP, Kim KJ, Kim EH, Kim CJ. Treadmill exercise increases cell proliferation in dentate gyrus of rats with streptozotocin-induced diabetes. J Diabetes Complications. 2003;17:29–33. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical