Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2007:392-7.
doi: 10.1182/asheducation-2007.1.392.

Genetic pathways in the pathogenesis of therapy-related myelodysplasia and acute myeloid leukemia

Affiliations
Review

Genetic pathways in the pathogenesis of therapy-related myelodysplasia and acute myeloid leukemia

Jens Pedersen-Bjergaard et al. Hematology Am Soc Hematol Educ Program. 2007.

Abstract

In therapy-related myelodysplasia (t-MDS) and acute myeloid leukemia (t-AML), at least eight alternative genetic pathways have been defined based on characteristic recurrent chromosome abnormalities. Patients presenting as t-MDS and patients presenting as overt t-AML cluster differently in these pathways. The cytogenetic pattern depends on the type of leukemogenic therapy received: alkylating agents, topoisomerase II inhibitors, or radiotherapy. Three types of gene mutations are observed in MDS and AML: (1) Activating mutations of genes in the tyrosine kinase-RAS/BRAF signal transduction pathway, leading to increased cell proliferation (Class I mutations); (2) Inactivating mutations of genes encoding hematopoietic transcription factors, resulting in disturbed cell differentiation (Class II mutations); and (3) Inactivating mutations of the tumor suppressor gene p53. At least 14 different genes have been identified as mutated in t-MDS and t-AML, clustering differently and characteristically in the eight genetic pathways. Class I and Class II mutations are significantly associated, indicating their cooperation in leukemogenesis The chromosome aberrations and gene mutations detected in the therapy-related and in the de novo subsets of MDS and AML are identical, although the frequencies with which they are observed may differ. Hence, therapy-related and de novo MDS and AML are identical diseases and should be subclassified and treated similarly.

PubMed Disclaimer

MeSH terms

Substances