Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2008 Jan;153(2):252-62.
doi: 10.1038/sj.bjp.0707582. Epub 2007 Nov 19.

Endocannabinoids and cannabinoid receptors in ischaemia-reperfusion injury and preconditioning

Affiliations
Review

Endocannabinoids and cannabinoid receptors in ischaemia-reperfusion injury and preconditioning

P Pacher et al. Br J Pharmacol. 2008 Jan.

Abstract

Ischaemia-reperfusion (I/R) is a pivotal mechanism of organ injury during stroke, myocardial infarction, organ transplantation and vascular surgeries. Ischaemic preconditioning (IPC) is a potent endogenous form of tissue protection against I/R injury. On the one hand, endocannabinoids have been implicated in the protective effects of IPC through cannabinoid CB1/CB2 receptor-dependent and -independent mechanisms. However, there is evidence suggesting that endocannabinoids are overproduced during various forms of I/R, such as myocardial infarction or whole body I/R associated with circulatory shock, and may contribute to the cardiovascular depressive state associated with these pathologies. Previous studies using synthetic CB1 receptor agonists or knockout mice demonstrated CB1 receptor-dependent protection against cerebral I/R injury in various animal models. In contrast, several follow-up reports have shown protection afforded by CB1 receptor antagonists, but not agonists. Excitedly, emerging studies using potent CB2 receptor agonists and/or knockout mice have provided compelling evidence that CB2 receptor activation is protective against myocardial, cerebral and hepatic I/R injuries by decreasing the endothelial cell activation/inflammatory response (for example, expression of adhesion molecules, secretion of chemokines, and so on), and by attenuating the leukocyte chemotaxis, rolling, adhesion to endothelium, activation and transendothelial migration, and interrelated oxidative/nitrosative damage. This review is aimed to discuss the role of endocannabinoids and CB receptors in various forms of I/R injury (myocardial, cerebral, hepatic and circulatory shock) and preconditioning, and to delineate the evidence supporting the therapeutic utility of selective CB2 receptor agonists, which are devoid of psychoactive effects, as a promising new approach to limit I/R-induced tissue damage.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Mechanisms of CB2 receptor-dependent protection in ischaemia/reperfusion (I/R). CB2 receptor agonists may protect against I/R injury by attenuating endothelial cell activation/inflammatory response, chemotaxis of inflammatory cells, rolling and adhesion of inflammatory cells to the endothelium, transendothelial migration, adhesion to the parenchymal cells and activation, and interrelated oxidative/nitrosative stress/inflammatory response.
Figure 2
Figure 2
Triggers and sources of endocannabinoids during I/R, and effects mediated via their receptors with potential relevance to pathophysiology. I/R, ischaemia/reperfusion.

References

    1. Ashton JC, Rahman RM, Nair SM, Sutherland BA, Glass M, Appleton I. Cerebral hypoxia–ischemia and middle cerebral artery occlusion induce expression of the cannabinoid CB2 receptor in the brain. Neurosci Lett. 2007;412:114–117. - PubMed
    1. Batkai S, Jarai Z, Wagner JA, Goparaju SK, Varga K, Liu J, et al. Endocannabinoids acting at vascular CB1 receptors mediate the vasodilated state in advanced liver cirrhosis. Nat Med. 2001;7:827–832. - PubMed
    1. Batkai S, Mukhopadhyay P, Harvey-White J, Kechrid R, Pacher P, Kunos G. Endocannabinoids acting at CB1 receptors mediate the cardiac contractile dysfunction in vivo in cirrhotic rats. Am J Physiol Heart Circ Physiol. 2007a;293:H1689–H1695. - PMC - PubMed
    1. Batkai S, Osei-Hyiaman D, Pan H, El-Assal O, Rajesh M, Mukhopadhyay P, et al. Cannabinoid-2 receptor mediates protection against hepatic ischemia/reperfusion injury. FASEB J. 2007b;21:1788–1800. - PMC - PubMed
    1. Batkai S, Pacher P, Jarai Z, Wagner JA, Kunos G. Cannabinoid antagonist SR-141716 inhibits endotoxic hypotension by a cardiac mechanism not involving CB1 or CB2 receptors. Am J Physiol Heart Circ Physiol. 2004a;287:H595–H600. - PMC - PubMed

Publication types

MeSH terms

Substances