Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 May;52(6):979-89.
doi: 10.1016/j.neuint.2007.10.009. Epub 2007 Oct 18.

Facilitatory effect of glutamate exocytosis from rat cerebrocortical nerve terminals by alpha-tocopherol, a major vitamin E component

Affiliations

Facilitatory effect of glutamate exocytosis from rat cerebrocortical nerve terminals by alpha-tocopherol, a major vitamin E component

Tsung-Tsair Yang et al. Neurochem Int. 2008 May.

Abstract

The effect of alpha-tocopherol, the major vitamin E component, on the release of endogenous glutamate has been investigated using rat cerebrocortical nerve terminals. Results showed that alpha-tocopherol facilitated the Ca2+-dependent but not the Ca2+-independent glutamate release evoked by 4-aminopyridine (4AP). This release facilitation was insensitive to glutamate transporter inhibitor L-trans-PDC or DL-TBOA, and blocked by the exocytotic neurotransmitter release inhibitor tetanus neurotoxin, indicating that alpha-tocopherol affects specifically the physiological exocytotic vesicular release without affecting the non-vesicular release. Facilitation of glutamate exocytosis by alpha-tocopherol was not due to its increasing synaptosomal excitability, because alpha-tocopherol did not alter the 4AP-evoked depolarization of the synaptosomal plasma membrane potential. Rather, examination of the effect of alpha-tocopherol on cytoplasmic free Ca2+ concentration revealed that the facilitation of glutamate release could be attributed to an increase in voltage-dependent Ca2+ influx. Consistent with this, the alpha-tocopherol-mediated facilitation of glutamate release was significantly reduced in synaptosomes pretreated with omega-CgTX MVIIC, a wide spectrum blocker of N- and P/Q-type Ca2+ channels. In addition, alpha-tocopherol modulation of glutamate release appeared to involve a protein kinase C (PKC) signalling cascade, insofar as pretreatment of synaptosomes with the PKC inhibitor GF109203X effectively suppressed the facilitatory effect of alpha-tocopherol on 4AP- or ionomycin-evoked glutamate release. Furthermore, alpha-tocopherol increased the phosphorylation of MARCKS, the major presynapic substrate for PKC, and this effect was also significantly attenuated by PKC inhibition. Together, these results suggest that alpha-tocopherol exerts an increase in PKC activation, which subsequently enhances voltage-dependent Ca2+ influx and vesicular release machinery to cause an increase in evoked glutamate release from rat cerebrocortical glutamatergic terminals. This finding might provide important information regarding to the action of vitamin E in the central nervous system.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources