Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Jan 25;283(4):1786-98.
doi: 10.1074/jbc.M708597200. Epub 2007 Nov 26.

Complex I is the major site of mitochondrial superoxide production by paraquat

Affiliations
Free article

Complex I is the major site of mitochondrial superoxide production by paraquat

Helena M Cochemé et al. J Biol Chem. .
Free article

Abstract

Paraquat (1,1'-dimethyl-4,4'-bipyridinium dichloride) is widely used as a redox cycler to stimulate superoxide production in organisms, cells, and mitochondria. This superoxide production causes extensive mitochondrial oxidative damage, however, there is considerable uncertainty over the mitochondrial sites of paraquat reduction and superoxide formation. Here we show that in yeast and mammalian mitochondria, superoxide production by paraquat occurs in the mitochondrial matrix, as inferred from manganese superoxide dismutase-sensitive mitochondrial DNA damage, as well as from superoxide assays in isolated mitochondria, which were unaffected by exogenous superoxide dismutase. This paraquat-induced superoxide production in the mitochondrial matrix required a membrane potential that was essential for paraquat uptake into mitochondria. This uptake was of the paraquat dication, not the radical monocation, and was carrier-mediated. Experiments with disrupted mitochondria showed that once in the matrix paraquat was principally reduced by complex I (mammals) or by NADPH dehydrogenases (yeast) to form the paraquat radical cation that then reacted with oxygen to form superoxide. Together this membrane potential-dependent uptake across the mitochondrial inner membrane and the subsequent rapid reduction to the paraquat radical cation explain the toxicity of paraquat to mitochondria.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources