Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Feb 8;283(6):3618-3627.
doi: 10.1074/jbc.M706906200. Epub 2007 Nov 26.

Autophosphorylation docking site Tyr-867 in Mer receptor tyrosine kinase allows for dissociation of multiple signaling pathways for phagocytosis of apoptotic cells and down-modulation of lipopolysaccharide-inducible NF-kappaB transcriptional activation

Affiliations
Free article

Autophosphorylation docking site Tyr-867 in Mer receptor tyrosine kinase allows for dissociation of multiple signaling pathways for phagocytosis of apoptotic cells and down-modulation of lipopolysaccharide-inducible NF-kappaB transcriptional activation

Nitu Tibrewal et al. J Biol Chem. .
Free article

Abstract

Efficient clearance of apoptotic cells is essential for tissue homeostasis, allowing for cellular turnover without inflammatory consequences. The Mer (Nyk and c-Eyk) receptor tyrosine kinase (Mertk) is involved in two aspects of apoptotic cell clearance by acting as a receptor for Gas6, a gamma-carboxylated phosphatidylserine-binding protein that bridges apoptotic and viable cells. First, Mertk acts in a bona fide engulfment pathway in concert with alphavbeta5 integrin by regulating cytoskeletal assemblages, and second, it acts as a negative regulator for inflammation by down-modulating pro-inflammatory signals mediated from bacterial lipopolysaccharide-Toll-like receptor 4 (TLR4) signaling, and hence recapitulating anti-inflammatory immune modulation by apoptotic cells. Here we describe Mertk post-receptor events that govern phagocytosis and cytoskeletal signaling are principally mediated by autophosphorylation site Tyr-867. Using the Mertk Y867F mutant and pharmacological inhibitors, we show that Tyr-867 is required for phosphatidylinositol 3-kinase and phospholipase Cgamma2 activation; their activation in turn elicits protein kinase C-dependent signals that act on the actin cytoskeleton. Although Mertk(Y867F) blocked the tyrosine phosphorylation of FAK on Tyr-861 and p130(cas) and also abrogated the phagocytosis of apoptotic cells, this mutant did not suppress lipopolysaccharide-inducible NF-kappaB transcription, nor was NF-kappaB activation dependent on the protein kinase C inhibitor, calphostin C. Finally, unlike the cytoskeletal events associated with Tyr-867 autophosphorylation, the trans-inhibition of NF-kappaB occurred in a postnuclear-dependent fashion independent of cytosolic IkappaB phosphorylation and p65/RelA sequestration. Taken together, these data suggest that Mertk has distinct and separable effects for phagocytosis and for resolving inflammation, providing a molecular rationale for how immune licensing and inflammation can be dissociated from phagocytosis in a single phagocytic receptor.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources