Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Jan 18;283(3):1670-1678.
doi: 10.1074/jbc.M706540200. Epub 2007 Nov 27.

Carbohydrate-response element-binding protein deletion alters substrate utilization producing an energy-deficient liver

Affiliations
Free article

Carbohydrate-response element-binding protein deletion alters substrate utilization producing an energy-deficient liver

Shawn C Burgess et al. J Biol Chem. .
Free article

Abstract

Livers from mice lacking the carbohydrate-responsive element-binding protein (ChREBP) were compared with wild type (WT) mice to determine the effect of this transcription factor on hepatic energy metabolism. The pyruvate dehydrogenase complex was considerably more active in ChREBP(-/-) mice because of diminished pyruvate dehydrogenase kinase activity. Greater pyruvate dehydrogenase complex activity caused a stimulation of lactate and pyruvate oxidation, and it significantly impaired fatty acid oxidation in perfused livers from ChREBP(-/-) mice. This shift in mitochondrial substrate utilization led to a 3-fold reduction of the free cytosolic [NAD(+)]/[NADH] ratio, a 1.7-fold increase in the free mitochondrial [NAD(+)]/[NADH] ratio, and a 2-fold decrease in the free cytosolic [ATP]/[ADP][P(i)] ratio in the ChREBP(-/-) liver compared with control. Hepatic pyruvate carboxylase flux was impaired with ChREBP deletion secondary to decreased fatty acid oxidation, increased pyruvate oxidation, and limited pyruvate availability because of reduced activity of liver pyruvate kinase and malic enzyme, which replenish pyruvate via glycolysis and pyruvate cycling. Overall, the shift from fat utilization to pyruvate and lactate utilization resulted in a decrease in the energy of ATP hydrolysis and a hypo-energetic state in the livers of ChREBP(-/-) mice.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources