Bayesian model comparison in nonlinear BOLD fMRI hemodynamics
- PMID: 18045013
- DOI: 10.1162/neco.2007.07-06-282
Bayesian model comparison in nonlinear BOLD fMRI hemodynamics
Abstract
Nonlinear hemodynamic models express the BOLD (blood oxygenation level dependent) signal as a nonlinear, parametric functional of the temporal sequence of local neural activity. Several models have been proposed for both the neural activity and the hemodynamics. We compare two such combined models: the original balloon model with a square-pulse neural model (Friston, Mechelli, Turner, & Price, 2000) and an extended balloon model with a more sophisticated neural model (Buxton, Uludag, Dubowitz, & Liu, 2004). We learn the parameters of both models using a Bayesian approach, where the distribution of the parameters conditioned on the data is estimated using Markov chain Monte Carlo techniques. Using a split-half resampling procedure (Strother, Anderson, & Hansen, 2002), we compare the generalization abilities of the models as well as their reproducibility, for both synthetic and real data, recorded from two different visual stimulation paradigms. The results show that the simple model is the better one for these data.
Similar articles
-
Using nonlinear models in fMRI data analysis: model selection and activation detection.Neuroimage. 2006 Oct 1;32(4):1669-89. doi: 10.1016/j.neuroimage.2006.03.006. Epub 2006 Jul 14. Neuroimage. 2006. PMID: 16844388
-
A state-space model of the hemodynamic approach: nonlinear filtering of BOLD signals.Neuroimage. 2004 Feb;21(2):547-67. doi: 10.1016/j.neuroimage.2003.09.052. Neuroimage. 2004. PMID: 14980557
-
Modeling the hemodynamic response to brain activation.Neuroimage. 2004;23 Suppl 1:S220-33. doi: 10.1016/j.neuroimage.2004.07.013. Neuroimage. 2004. PMID: 15501093 Review.
-
Estimation of the hemodynamic response of fMRI Data using RBF neural network.IEEE Trans Biomed Eng. 2007 Aug;54(8):1371-81. doi: 10.1109/TBME.2007.900795. IEEE Trans Biomed Eng. 2007. PMID: 17694857
-
Biophysical models of fMRI responses.Curr Opin Neurobiol. 2004 Oct;14(5):629-35. doi: 10.1016/j.conb.2004.08.006. Curr Opin Neurobiol. 2004. PMID: 15464897 Review.
Cited by
-
A mutual information-based metric for evaluation of fMRI data-processing approaches.Hum Brain Mapp. 2011 May;32(5):699-715. doi: 10.1002/hbm.21057. Hum Brain Mapp. 2011. PMID: 20533565 Free PMC article.
-
Comparing hemodynamic models with DCM.Neuroimage. 2007 Nov 15;38(3):387-401. doi: 10.1016/j.neuroimage.2007.07.040. Epub 2007 Aug 11. Neuroimage. 2007. PMID: 17884583 Free PMC article.
-
Dynamic modeling of neuronal responses in fMRI using cubature Kalman filtering.Neuroimage. 2011 Jun 15;56(4):2109-28. doi: 10.1016/j.neuroimage.2011.03.005. Epub 2011 Mar 9. Neuroimage. 2011. PMID: 21396454 Free PMC article.
-
Dimensionality estimation for optimal detection of functional networks in BOLD fMRI data.Neuroimage. 2011 May 15;56(2):531-43. doi: 10.1016/j.neuroimage.2010.09.034. Epub 2010 Sep 19. Neuroimage. 2011. PMID: 20858546 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Medical