Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Jan;29(1):84-92.
doi: 10.1093/carcin/bgm267. Epub 2007 Nov 28.

Downregulation of Dkk3 activates beta-catenin/TCF-4 signaling in lung cancer

Affiliations

Downregulation of Dkk3 activates beta-catenin/TCF-4 signaling in lung cancer

Wen Yue et al. Carcinogenesis. 2008 Jan.

Abstract

Although the oncogenic role of the Wnt/beta-catenin pathway is well defined, it remains unclear how this pathway is aberrantly activated in lung cancer. We found that Dickkopf (Dkk)-3, a member of Dkk family of Wnt antagonists, is frequently inactivated in lung cancer and plays a role in suppressing lung cancer cell growth through inhibition of beta-catenin/T-cell factor (TCF)-4 signaling. Dkk3 is the only Dkk family member abundantly expressed in normal lung, but silenced by promoter hypermethylation in a large fraction of lung cancer cell lines and lung tumors. Downregulation of Dkk3 was correlated with tumor progression and expression of nuclear beta-catenin in lung tumors. Ectopic expression of Dkk3 in lung cancer cells with Dkk3 hypermethylation induced apoptosis and inhibited TCF-4 activity as well as nuclear accumulation of beta-catenin and expression of TCF-4 targets c-Myc and cyclin D1. Furthermore, small interference RNA knock down of Dkk3 in cells lacking Dkk3 hypermethylation was sufficient to promote cell proliferation, beta-catenin nuclear translocation and expression of c-Myc. These observations suggested that epigenetic inactivation of Dkk3 activates the Wnt/beta-catenin pathway, thereby promoting the growth of lung cancer cells.

PubMed Disclaimer

Publication types

MeSH terms

Substances