Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Clinical Trial
. 2008 Feb;104(2):490-8.
doi: 10.1152/japplphysiol.00778.2007. Epub 2007 Nov 29.

Differential effects of acute hypoxia and high altitude on cerebral blood flow velocity and dynamic cerebral autoregulation: alterations with hyperoxia

Affiliations
Free article
Clinical Trial

Differential effects of acute hypoxia and high altitude on cerebral blood flow velocity and dynamic cerebral autoregulation: alterations with hyperoxia

Philip N Ainslie et al. J Appl Physiol (1985). 2008 Feb.
Free article

Abstract

We hypothesized that 1) acute severe hypoxia, but not hyperoxia, at sea level would impair dynamic cerebral autoregulation (CA); 2) impairment in CA at high altitude (HA) would be partly restored with hyperoxia; and 3) hyperoxia at HA and would have more influence on blood pressure (BP) and less influence on middle cerebral artery blood flow velocity (MCAv). In healthy volunteers, BP and MCAv were measured continuously during normoxia and in acute hypoxia (inspired O2 fraction = 0.12 and 0.10, respectively; n = 10) or hyperoxia (inspired O2 fraction, 1.0; n = 12). Dynamic CA was assessed using transfer-function gain, phase, and coherence between mean BP and MCAv. Arterial blood gases were also obtained. In matched volunteers, the same variables were measured during air breathing and hyperoxia at low altitude (LA; 1,400 m) and after 1-2 days after arrival at HA ( approximately 5,400 m, n = 10). In acute hypoxia and hyperoxia, BP was unchanged whereas it was decreased during hyperoxia at HA (-11 +/- 4%; P < 0.05 vs. LA). MCAv was unchanged during acute hypoxia and at HA; however, acute hyperoxia caused MCAv to fall to a greater extent than at HA (-12 +/- 3 vs. -5 +/- 4%, respectively; P < 0.05). Whereas CA was unchanged in hyperoxia, gain in the low-frequency range was reduced during acute hypoxia, indicating improvement in CA. In contrast, HA was associated with elevations in transfer-function gain in the very low- and low-frequency range, indicating CA impairment; hyperoxia lowered these elevations by approximately 50% (P < 0.05). Findings indicate that hyperoxia at HA can partially improve CA and lower BP, with little effect on MCAv.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources