Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Dec 26;129(51):15895-902.
doi: 10.1021/ja074719j. Epub 2007 Dec 4.

The reversal by sulfate of the denaturant activity of guanidinium

Affiliations

The reversal by sulfate of the denaturant activity of guanidinium

Christopher E Dempsey et al. J Am Chem Soc. .

Abstract

Guanidinium (Gdm+) chloride is a powerful protein denaturant, whereas the sulfate dianion (SO42-) is a strong stabilizer of folded protein states; Gdm2SO4 is effectively neutral in its effects on protein stability. While the "neutralizing" effects of protein-stabilizing solutes on the activity of denaturants can be broadly interpreted in terms of additive effects of the solutes, recent experimental and simulation studies support a role for hetero-ion interactions in the effect of sulfate on Gdm+ denaturation [Mason, P. E.; et al. J. Phys. Chem. B 2005, 109, 24185-24196]. Here we describe an experimental strategy for testing this mechanism that involves spectroscopic analysis of the separate effects of alkali metal sulfates (Na2SO4, Rb2SO4), GdmCl, and Gdm2SO4 on the folded populations of several peptides chosen to dissect specific noncovalent contributions to the conformational stability of proteins [alanine-based helical peptides stabilized by hydrogen bonds, tryptophan zipper (trpzip) peptides stabilized largely by cross-strand indole-indole interactions]. While the trpzip peptides are highly sensitive to GdmCl denaturation, they are unaffected by NaCl, Na2SO4, or Gdm2SO4, indicating that the reversal of the denaturant activity of Gdm+ by sulfate in this case is not due to competing stabilizing (sulfate) and destabilizing (Gdm+) interactions. Gdm2SO4 was found to retain considerable denaturant activity against alanine-based alpha-helical peptides. The differences in the effects of Gdm2SO4 on the two peptide types can be understood in terms of the different mechanisms of Gdm+ denaturation of trpzip peptides and helical peptides, respectively, and the specific nature of Gdm+ and SO42- ionic "clustering" that differentially affects the ability of Gdm+ to make the molecular interactions with the peptides that underlie its denaturant activity.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources