Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Dec 4:4:131.
doi: 10.1186/1743-422X-4-131.

Aggregates of bacteriophage 0305phi8-36 seed future growth

Affiliations

Aggregates of bacteriophage 0305phi8-36 seed future growth

Philip Serwer et al. Virol J. .

Abstract

Lytic bacteriophage 0305phi8-36 forms visually observed aggregates during plaque formation. Aggregates intrinsically lower propagation potential. In the present study, the following observations indicate that lost propagation potential is regained with time: (1) Aggregates sometimes concentrate at the edge of clear plaques. (2) A semi-clear ring sometimes forms beyond the plaques. (3) Formation of a ring is completely correlated with the presence of aggregates at the same angular displacement along the plaque edge. To explain this aggregate-derived lowering/raising of propagation potential, the following hypothesis is presented: Aggregation/dissociation of bacteriophage of 0305phi8-36 is a selected phenomenon that evolved to maintain high host finding rate in a trade-off with maintaining high rate of bacteriophage progeny production. This hypothesis explains ringed plaque morphology observed for other bacteriophages and predicts that aggregates will undergo time-dependent change in structure as propagation potential increases. In support, fluorescence microscopy reveals time-dependent change in the distance between resolution-limited particles in aggregates.

PubMed Disclaimer

Figures

Figure 1
Figure 1
In-plaque aggregation/dissociation of bacteriophage 0305φ8-36. A 0.1% agarose overlay was mixed with host cells, poured over a 1.5% agar gel and gelled in a Petri plate, as described in the text. Four plaques were initiated by stabbing and the Petri plate was incubated for 32 hr. at room temperature (25 ± 3°C). Light scattering was photographed. The white dashed lines indicate opaque zone segments that are near the edge of a mostly clear plaque. The black dashed line indicates a semi-clear ring segment. The arrowhead indicates an opaque spot. The arrow indicates a comparatively turbid region between clear plaque and semi-clear ring.

Similar articles

Cited by

References

    1. Abedon ST, Hyman P, Thomas C. Experimental examination of bacteriophage latent-period evolution as a response to bacterial availability. Appl Environ Microbiol. 2003;69:7499–7506. doi: 10.1128/AEM.69.12.7499-7506.2003. - DOI - PMC - PubMed
    1. Heineman RH, Molineux IJ, Bull JJ. Evolutionary robustness of an optimal phenotype: re-evolution of lysis in a bacteriophage deleted for its lysin gene. J Mol Evolution. 2005;61:181–191. doi: 10.1007/s00239-004-0304-4. - DOI - PubMed
    1. Messenger SL, Molineux IJ, Bull JJ. Virulence evolution in a virus obeys a trade-off. Proc Biol Sci/The Royal Soc. 1999;266:397–404. doi: 10.1098/rspb.1999.0651. - DOI - PMC - PubMed
    1. Wichman HA, Millstein J, Bull JJ. Adaptive molecular evolution for 13,000 phage generations: a possible arms race. Genetics. 2005;170:19–31. doi: 10.1534/genetics.104.034488. - DOI - PMC - PubMed
    1. Pride DT, Wassenaar TM, Ghose C, Blaser MJ. Evidence of host-virus co-evolution in tetranucleotide usage patterns of bacteriophages and eukaryotic viruses. BMC Genomics. 2006;7:8. doi: 10.1186/1471-2164-7-8. - DOI - PMC - PubMed

Publication types

MeSH terms

LinkOut - more resources