Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Dec;48(12):2046-55.
doi: 10.2967/jnumed.107.044503.

L-3-11C-lactate as a PET tracer of myocardial lactate metabolism: a feasibility study

Affiliations
Free article

L-3-11C-lactate as a PET tracer of myocardial lactate metabolism: a feasibility study

Pilar Herrero et al. J Nucl Med. 2007 Dec.
Free article

Abstract

Lactate is a key myocardial energy source. Lactate metabolism is altered in a variety of conditions, such as exercise and diabetes mellitus. However, to our knowledge, noninvasive quantitative measurements of myocardial lactate metabolism have never been performed because of the lack of an adequate radiotracer. In this study we tested L-3-(11)C-lactate ((11)C-lactate) as such a tracer.

Methods: Twenty-three dogs were studied under a wide range of metabolic interventions. (11)C-Lactate and (13)C-lactate were injected as boluses and PET data were acquired for 1 h. Concomitant arterial and coronary sinus (ART/CS) blood samples were collected to identify (13)C-lactate metabolites and to measure fractional myocardial extraction/production of (11)C metabolite fractions ((11)C acidic: (11)CO(2) and (11)C-lactate; (11)C basic: (11)C-labeled amino acids; and (11)C neutral: (11)C-glucose). Lactate metabolism was quantified using 2 PET approaches: monoexponential clearance analysis (oxidation only) and kinetic modeling of PET (11)C-myocardial curves.

Results: Arterial (11)C acidic, neutral, and basic metabolites were identified as primarily (11)C-labeled lactate + pyruvate, glucose, and alanine, respectively. Despite a significant contribution of (11)C-glucose (23%-45%) and (11)C-alanine (<11%) to total arterial (11)C activity, both were minimally extracted(+)/produced(-) by the heart (1.7% +/- 1.0% and -0.12% +/- 0.84%, respectively). Whereas extraction of (11)C-lactate correlated nonlinearly with that of unlabeled lactate extraction (r = 0.86, P < 0.0001), (11)CO(2) production correlated linearly with extraction of unlabeled lactate (r = 0.89, P < 0.0001, slope = 1.20 +/- 0.13). In studies with physiologic free fatty acids (FFA) (415 +/- 216 nmol/mL), (11)C-lactate was highly extracted (32% +/- 12%) and oxidized (26% +/- 14%), and PET monoexponential clearance and kinetic modeling analyses resulted in accurate estimates of lactate oxidation and metabolism. In contrast, supraphysiologic levels of plasma FFA (4,111 +/- 1,709 nmol/mL) led to poor PET estimates of lactate metabolism due to negligible lactate oxidation (1% +/- 2%) and complete backdiffusion of unmetabolized (11)C-lactate into the vasculature (28% +/- 22%).

Conclusion: Under conditions of net lactate extraction, L-3-(11)C-lactate faithfully traces myocardial metabolism of exogenous lactate. Furthermore, in physiologic substrate environments, noninvasive measurements of lactate metabolism are feasible with PET using myocardial clearance analysis (oxidation) or compartmental modeling. Thus, L-3-(11)C-lactate should prove quite useful in widening our understanding of the role that lactate oxidation plays in the heart and other tissues and organs.

PubMed Disclaimer

Publication types

LinkOut - more resources