Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Mar;49(3):581-7.
doi: 10.1194/jlr.M700385-JLR200. Epub 2007 Dec 3.

An apolipoprotein A-I mimetic dose-dependently increases the formation of prebeta1 HDL in human plasma

Affiliations
Free article

An apolipoprotein A-I mimetic dose-dependently increases the formation of prebeta1 HDL in human plasma

Jason S Troutt et al. J Lipid Res. 2008 Mar.
Free article

Abstract

Prebeta1 HDL is the initial plasma acceptor of cell-derived cholesterol in reverse cholesterol transport. Recently, small amphipathic peptides composed of D-amino acids have been shown to mimic apolipoprotein A-I (apoA-I) as a precursor for HDL formation. ApoA-I mimetic peptides have been proposed to stimulate the formation of prebeta1 HDL and increase reverse cholesterol transport in apoE-null mice. The existence of a monoclonal antibody (MAb 55201) and a corresponding ELISA method that is selective for the detection of the prebeta(1) subclass of HDL provides a means of establishing a correlation between apoA-I mimetic dose and prebeta1 HDL formation in human plasma. Using this prebeta1 HDL ELISA, we demonstrate marked apoA-I mimetic dose-dependent prebeta1 HDL formation in human plasma. These results correlated with increases in band density of the plasma prebeta1 HDL, when observed by Western blotting, as a function of increased apoA-I mimetic concentration. Increased prebeta1 HDL formation was observed after as little as 1 min and was maximal within 1 h. Together, these data suggest that a high-throughput prebeta1 HDL ELISA provides a way to quantitatively measure a key component of the reverse cholesterol transport pathway in human plasma, thus providing a possible method for the identification of apoA-I mimetic molecules.

PubMed Disclaimer

MeSH terms

LinkOut - more resources