Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Mar;57(3):669-77.
doi: 10.2337/db07-1316. Epub 2007 Dec 5.

Postnatal programming of glucocorticoid metabolism in rats modulates high-fat diet-induced regulation of visceral adipose tissue glucocorticoid exposure and sensitivity and adiponectin and proinflammatory adipokines gene expression in adulthood

Affiliations

Postnatal programming of glucocorticoid metabolism in rats modulates high-fat diet-induced regulation of visceral adipose tissue glucocorticoid exposure and sensitivity and adiponectin and proinflammatory adipokines gene expression in adulthood

Sandrine Boullu-Ciocca et al. Diabetes. 2008 Mar.

Abstract

Objective: Alterations of the perinatal environment, which lead to increased prevalence of the metabolic syndrome in adulthood, program an upregulation of systemic and/or adipose tissue glucocorticoid metabolism (11 beta-hydroxysteroid dehydrogenase type 1 [11 beta-HSD-1]-induced corticosterone reactivation). We hypothesized that postnatal programming could modulate high-fat diet-induced adipose tissue dysregulation in adulthood.

Research design and methods: We compared the effects of chronic (since weaning) high- or low-fat diet in postnatally normofed (control) or overfed (programmed) rats.

Results: Postnatal programming accentuated high-fat diet-induced overweight, insulin resistance, glucose intolerance, and decrease in circulating and epididymal adipose tissue adiponectin. Neither manipulation altered liver function. Postnatal programming or high-fat diet increased systemic corticosterone production, which was not further modified when both manipulations were associated. Postnatal programming suppressed high-fat diet-induced decrease in mesenteric adipose tissue (MAT) glucocorticoid sensitivity and triggered high-fat diet-induced increase in MAT glucocorticoid exposure, subsequent to enhanced MAT 11 beta-HSD-1 gene expression. MAT tumor necrosis factor (TNF)-alpha, TNF-receptor 1, interleukin (IL)-6, resistin, and plasminogen activator inhibitor-1 mRNAs were not changed by high-fat feeding in control rats and showed a large increase in programmed animals, with this effect further enhanced by high-fat diet for TNF-alpha and IL-6.

Conclusions: Our data show for the first time that postnatal manipulation programs high-fat diet-induced upregulation of MAT glucocorticoid exposure, sensitivity, and inflammatory status and therefore reveal the pivotal role of the environment during the perinatal period on the development of diet-induced adipose tissue dysregulation in adulthood. They also urge the need for clinical trials with specific 11 beta-HSD-1 inhibitors.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms