Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2007 Dec;127(12):1927-36.
doi: 10.1248/yakushi.127.1927.

[Role of isomerized protein repair enzyme, PIMT, in cellular functions]

[Article in Japanese]
Affiliations
Free article
Review

[Role of isomerized protein repair enzyme, PIMT, in cellular functions]

[Article in Japanese]
Takemitsu Furuchi et al. Yakugaku Zasshi. 2007 Dec.
Free article

Abstract

Proteins are subject to various types of spontaneous modifications that can disrupt their structures with sometimes adverse affects on biological activity. The formation of L-isoaspartyl (or D-aspartyl) residues, through either the deamidation of asparagine or dehydration of aspartate, is one of the most frequent types of deterioration occurring under physiological conditions. Protein L-isoaspartate/D-aspartate o-methyltransferase (PIMT) is a conserved and ubiquitous enzyme that participates in the repair of various isomerized proteins. PIMT catalyzes the transfer of the methyl group of S-adenosyl-L-methionine onto the alpha-carboxyl group of an L-isoaspartyl (or the beta-carboxyl group of an D-aspartyl) residue, which initiates the conversion of this residue to an L-aspartyl residue. PIMT-deficient mice have been shown to die at a mean age of 42 days from progressive epileptic seizures with grand mal and myoclonus. Although PIMT-deficiency clearly leads to the accumulation of isomerized proteins, it is currently unclear how this causes progressive epilepsy in PIMT-deficient mice. As a first step towards understanding this, we developed a new assay to measure PIMT activity in cell lysates. Additionally, we isolated PIMT knockdown cells from HEK293 cells that were stably transfected with a PIMT small interfering RNA expression vector. PIMT activities were significantly decreased in the PIMT knockdown cells, and analysis of the transfectants revealed that MEK and ERK were hyperactivated after cell stimulation with epidermal growth factor (EGF). These results indicate that the ability to repair L-isoaspartyl-(or D-aspartyl-) containing proteins is important for the maintenance of normal MEK-ERK signaling.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

Substances