Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2008 Mar;186(2):315-23.
doi: 10.1007/s00221-007-1232-5. Epub 2007 Dec 5.

Survival and regeneration of cutaneous and muscular afferent neurons after peripheral nerve injury in adult rats

Affiliations
Comparative Study

Survival and regeneration of cutaneous and muscular afferent neurons after peripheral nerve injury in adult rats

Dag Welin et al. Exp Brain Res. 2008 Mar.

Abstract

Peripheral nerve injury induces the retrograde degeneration of dorsal root ganglion (DRG) cells, which affects predominantly the small-diameter cutaneous afferent neurons. This study compares the time-course of retrograde cell death in cutaneous and muscular DRG cells after peripheral nerve transection as well as neuronal survival and axonal regeneration after primary repair or nerve grafting. For comparison, spinal motoneurons were also included in the study. Sural and medial gastrocnemius DRG neurons were retrogradely labeled with the fluorescent tracers Fast Blue (FB) or Fluoro-Gold (FG) from the homonymous transected nerves. Survival of labeled sural and gastrocnemius DRG cells was assessed at 3 days and 1-24 weeks after axotomy. To evaluate axonal regeneration, the sciatic nerve was transected proximally at 1 week after FB-labeling of the sural and medial gastrocnemius nerves and immediately reconstructed using primary repair or autologous nerve grafting. Twelve weeks later, the fluorescent tracer Fluoro-Ruby (FR) was applied 10 mm distal to the sciatic lesion in order to double-label sural and gastrocnemius neurons that had regenerated across the repair site. Counts of labeled gastrocnemius DRG neurons did not reveal any significant retrograde cell death after nerve transection. In contrast, sural axotomy induced a delayed loss of sural DRG cells, which amounted to 22% at 4 weeks and 43-48% at 8-24 weeks postoperatively. Proximal transection of the sciatic nerve at 1 week after injury to the sural or gastrocnemius nerves neither further increased retrograde DRG degeneration, nor did it affect survival of sural or gastrocnemius motoneurons. Primary repair or peripheral nerve grafting supported regeneration of 53-60% of the spinal motoneurons and 47-49% of the muscular DRG neurons at 13 weeks postoperatively. In the cutaneous DRG neurons, primary repair or peripheral nerve grafting increased survival by 19-30% and promoted regeneration of 46-66% of the cells. The present results suggest that cutaneous DRG neurons are more sensitive to peripheral nerve injury than muscular DRG cells, but that their regenerative capacity does not differ from that of the latter cells. However, the retrograde loss of cutaneous DRG cells taking place despite immediate nerve repair would still limit the recovery of cutaneous sensory functions.

PubMed Disclaimer

Similar articles

Cited by

References

    1. J Neurosci Methods. 2006 Apr 15;152(1-2):156-62 - PubMed
    1. Trends Neurosci. 2001 Sep;24(9):504-6 - PubMed
    1. Scand J Plast Reconstr Surg Hand Surg. 2003;37(1):1-9 - PubMed
    1. Nature. 1987 Feb 19-25;325(6106):711-4 - PubMed
    1. Mol Neurobiol. 2003 Jun;27(3):277-324 - PubMed

Publication types

LinkOut - more resources