Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Apr;71(4):274-8.
doi: 10.1002/jemt.20552.

Voltage-induced morphological modifications in oocyte membranes containing exogenous K+ channels studied by electrochemical scanning force microscopy

Affiliations

Voltage-induced morphological modifications in oocyte membranes containing exogenous K+ channels studied by electrochemical scanning force microscopy

Andrea Alessandrini et al. Microsc Res Tech. 2008 Apr.

Abstract

We report on a novel use of electrochemical scanning force microscopy (SFM) for the investigation of morphological modifications occurring in plasma membranes containing voltage-gated ion channels, on membrane potential variation. Membrane patches of Xenopus laevis oocytes microinjected with exogenous KAT1 cRNA, deposited by a stripping method at the surface of a derivatized gold film in inside-out configuration, have been imaged by SFM in an electrochemical cell. A potentiostat was used to maintain a desired potential drop across the membrane. Performing imaging at potential values corresponding to open (-120 mV) and closed (+20 mV) states for KAT1, morphological differences in localized sample zones were observed. Particularly, cross-shaped features involving a significant membrane portion appear around putative channel locations. The reported approach constitutes the first demonstration of an SPM-based experimental technique suitable to investigate the rearrangements occurring to the plasma membrane containing voltage-gated channels on transmembrane potential variation.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources