Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Dec;32(6):1115-23.
doi: 10.1139/H07-102.

Rat hindlimb unloading down-regulates insulin like growth factor-1 signaling and AMP-activated protein kinase, and leads to severe atrophy of the soleus muscle

Affiliations

Rat hindlimb unloading down-regulates insulin like growth factor-1 signaling and AMP-activated protein kinase, and leads to severe atrophy of the soleus muscle

Bing Han et al. Appl Physiol Nutr Metab. 2007 Dec.

Abstract

Inactivity is known to induce muscle atrophy, which is associated with insulin and insulin-like growth factor-1 (IGF-1) resistance, but the associated mechanisms remain poorly defined. The hindlimb unloading model has been used to reduce muscle activity. The objective of this study was to show the effect of hindlimb unloading on IGF-1 signaling and AMP-activated protein kinase (AMPK) activity in rat soleus and extensor digitorum longus (EDL) muscles. Twelve 7-week-old male Sprague-Dawley rats were assigned to 2 treatments: (i) rats without hindlimb unloading (Con) and (ii) rats with hindlimb unloading (Unload). After 2 weeks of treatment, the soleus and EDL muscles were dissected and used for biochemical analyses. Hindlimb unloading induced severe muscle atrophy in soleus muscle (0.122+/-0.007 g for Con vs. 0.031+/-0.004 g for Unload, p<0.01), but only slight atrophy in EDL muscle. The phosphorylation of AMPK (p<0.05) and its downstream substrate, acetyl-CoA carboxylase (ACC) (p<0.01) were reduced in soleus muscle due to unloading. The concentration of insulin receptor substrate-1 (IRS-1) and phosphorylation of IRS-1 at Ser636-639 and Ser789 were also reduced. Downstream IGF-1 signaling was downregulated in Unload rats. A reduction in IGF-1 concentration in unloaded soleus muscle was also observed. A slight reduction in AMPK activity and IGF-1 signaling were observed in EDL muscle. Since AMPK controls the sensitivity of IGF-1 signaling through phosphorylation at Ser789, the reduction in AMPK activity is expected to reduce the response of downstream IGF-1 signaling to IGF-1; this, in combination with reduced IGF-1 concentration, might be responsible for the severe muscle atrophy observed in unloaded soleus muscle.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources