Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Oct-Dec;21(4):323-9.
doi: 10.1590/s1806-83242007000400008.

In vitro antimicrobial activity of irreversible hydrocolloid impressions against 12 oral microorganisms

Affiliations
Free article

In vitro antimicrobial activity of irreversible hydrocolloid impressions against 12 oral microorganisms

Luciana Assirati Casemiro et al. Braz Oral Res. 2007 Oct-Dec.
Free article

Abstract

This study evaluated in vitro the antimicrobial activity of irreversible hydrocolloids (one containing an antimicrobial agent) prepared with water or with a 0.2% chlorhexidine digluconate solution against 12 strains of the oral microbiota. Twenty specimens (0.5x1.0 cm) for each group (1. Jeltrate mixed with water; 2. Jeltrate mixed with 0.2% chlorhexidine digluconate solution; 3. Greengel mixed with water; 4. Greengel mixed with 0.2% chlorhexidine digluconate solution) were prepared under sterile conditions and placed in culture media inoculated with the indicator strains. After incubation in aerobiosis or microaerophilia, inhibition of the microbial growth was measured and the results were interpreted. The normal adherence curve revealed a non-normal distribution of the data, so the non-parametric Friedman Test was performed (p<0.05). The antimicrobial activity of the groups was classified in the following order: 1, 3, 4, and 2. The results suggest that the method of preparing irreversible hydrocolloids with a 0.2% digluconate chlorhexidine solution is more effective than the incorporation of an antimicrobial agent in the powder to reduce cross-contamination caused by impressions.

PubMed Disclaimer

MeSH terms

LinkOut - more resources