Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Jan 25;375(4):1040-51.
doi: 10.1016/j.jmb.2007.11.019. Epub 2007 Nov 13.

Effect of phosphorylation on alpha B-crystallin: differences in stability, subunit exchange and chaperone activity of homo and mixed oligomers of alpha B-crystallin and its phosphorylation-mimicking mutant

Affiliations

Effect of phosphorylation on alpha B-crystallin: differences in stability, subunit exchange and chaperone activity of homo and mixed oligomers of alpha B-crystallin and its phosphorylation-mimicking mutant

Md Faiz Ahmad et al. J Mol Biol. .

Abstract

Phosphorylation appears to be one of the modulators of chaperone functions of small heat shock proteins. However, the role of phosphorylation is not completely understood. We have investigated the structural and functional consequences of a phosphorylation-mimicking mutation in alpha B-crystallin, a small heat shock protein with chaperone activity. We have used a phosphorylation-mimicking mutant, 3D alpha B-crystallin, in which all the three phosphorylatable serine residues are replaced with aspartic acid. 3D alpha B-Crystallin showed enhanced chaperone-like activity towards DTT-induced aggregation of insulin, heat-induced aggregation of citrate synthase and SDS-induced amyloid fibril formation of alpha-synuclein. Fluorescence and circular dichroism spectroscopic studies showed that 3D alpha B-crystallin exhibits lower stability towards urea-induced denaturation compared to alpha B-crystallin. Subunit exchange studies using fluorescence resonance energy transfer showed that 3D alpha B-crystallin exhibits an observable increase in subunit exchange compared to alpha B-crystallin. Since only part of alpha B-crystallin is phosphorylated in vivo, our subunit exchange studies indicate that formation of mixed oligomers between the unphosphorylated and phosphorylated subunits are likely to play a role in vivo. Our study shows that mixed-oligomer formation modulates the chaperone-like activity. We propose that the degree of phosphorylation of the alpha B-crystallin oligomers and temperature are key modulators to achieve a wide range of chaperone capabilities of the small heat shock protein, alpha -crystallin.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources