Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2007 Oct;47(5):937-41.

[Study progress on compatible solutes in moderately halophilic bacteria]

[Article in Chinese]
Affiliations
  • PMID: 18062278
Review

[Study progress on compatible solutes in moderately halophilic bacteria]

[Article in Chinese]
Bai-Suo Zhao et al. Wei Sheng Wu Xue Bao. 2007 Oct.

Abstract

Moderately halophilic bacteria which grow best in media with 3% to 15% salt constitute a heterogenous group of microorganisms which belong to different genera. These bacteria can inhabit the salt or soda lakes, coastal lagoons or man-made salterns. Moderately halophilc bacteria living in higher saline environments can not only cope with high osmotic stress but also adapt osmotic shock in short time. To adapt to these environments, all the species make a osmoprotection by the accumulation a restricted range of low molecular mass molecules, small, organic compatible solutes, such as sugars, amino acids, betaines and ectoines. Therefore, the osmoadaptation of moderately halophilc bacteria is regulated by the so-called "compatible solute" strategy. Compatible solutes are operationally defined as organic osmolytes that can be amassed by the cell in exceedingly high concentrations without disturbing vital cellular functions and the correct folding of proteins. As a result, compatible solutes can make important contributions to the restoration of the turgor under conditions of low water activity by counteracting the efflux of water from the cell. In addition, they have a stabilizing, both in vivo and vitro, on the native structure of proteins and cell components. This mechanism has a minimal requirement for genetic change and a high degree of flexibility in allowing moderate halophiles to adapt to saline environment. In this review, the adaptation to saline environments, the variety and characteristic of compatible solutes, and the functional mechanism of moderately halophilic bacteria are reviewed and discussed.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources