Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2007 Dec;21(4):189-94.
doi: 10.3341/kjo.2007.21.4.189.

Short term effects of topical cyclosporine and viscoelastic on the ocular surfaces in patients with dry eye

Affiliations
Comparative Study

Short term effects of topical cyclosporine and viscoelastic on the ocular surfaces in patients with dry eye

Jun Woong Moon et al. Korean J Ophthalmol. 2007 Dec.

Abstract

Purpose: To compare the short term effects of topical 0.05% cyclosporine (CsA) and a mixture of 0.08% chondroitin sulfate and 0.06% sodium hyaluronate (CS-HA) on dry eye ocular surfaces.

Methods: 36 patients with moderate to severe dry eye (5 mm/5 min or less with Schirmer's test or tear break up time (BUT) less than 6 seconds), were treated with topical application of CS-HA on one eye and CsA on the other 4 times a day for 6-8 weeks. BUT, Schirmer's test without anesthesia, and conjunctival impression cytology (CIC; goblet cell density, nucleus to cytoplasmic ratio, and epithelial cell morphology) were evaluated and compared between eyes before and after treatment (repeated measurement of ANOVA).

Results: After treatment, BUT and tear wettings were significantly prolonged in each group. Topical CsA treated eyes had greater increase in BUT (p=0.026); there was no significant difference in tear wetting (p=0.132). While the 3 parameters of CIC improved in both groups, goblet cell density was significantly higher in eyes treated with CsA (p=0.033).

Conclusions: While both CS-HA and 0.05% CsA eyedrops improve ocular surfaces, topical CsA may have a better effect on enhancing tear film stability and goblet cell density.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Comparing tear film BUT between eyes before and after topical application of topical 0.077% chondroitin sulfate with 0.06% hyaluronate (on right eyes) and 0.05% cyclosporine (on left eyes). Before treatment, there was no significant difference between eyes. After applications, tear film BUT increased significantly in both eyes but was more profound in left eyes.
Fig. 2
Fig. 2
Comparing aqueous tear production (Schirmer's test) between eyes before and after topical application of 0.077% chondroitin sulfate with 0.06% hyaluronate (on right eyes) and 0.05% cyclosporine (on left eyes). After treatment with the assigned eyedrop, aqueous production increased significantly in both eyes. The amount of increase in both eyes was similar.
Fig. 3
Fig. 3
Before treatment with topical eyedrops, goblet cell densities (GCD) were similar between eyes. After assigned treatments (topical chondroitin sulfate with sodium hyaluronate (CS-HA) for right eyes and topical cyclosporine (CsA) for left eyes), there was a significant GCD increase in both eyes. However, GCD increase was greater in left eyes.
Fig. 4
Fig. 4
Before topical eyedrops, nucleus to cytoplasmic ratios (NCR) of conjunctival impression cytology were similar between the two groups. After assigned treatments (topical chondroitin sulfate with sodium hyaluronate (CS-HA) for right eyes and topical cyclosporine (CsA) for left eyes), there was significant NCR improvement in both eyes. There was no significant differences among treatment groups.
Fig. 5
Fig. 5
Before treatments, epithelial morphologies (ECM) of conjunctival epithelium in conjunctival impression cytology were similar between eyes. While there was significant ECM improvement in both eyes after treatments (topical chondroitin sulfate with sodium hyaluronate (CS-HA) for right eyes and topical cyclosporine (CsA) for left eyes), the degree of change in both eyes was similar.

References

    1. Baudouin C. The pathology of dry eye. Surv Ophthalmol. 2001;45:S211–S220. - PubMed
    1. Lemp MA. Report of the National Eye Institute/Industry workshop on Clinical Trials in Dry Eyes. CLAO J. 1995;21:221–232. - PubMed
    1. Yeh S, Song XJ, Farley W, et al. Apoptosis of ocular surface cells in experimentally induced dry eye. Invest Ophthalmol Vis Sci. 2003;44:124–129. - PubMed
    1. Kunert KS, Tisdale AS, Gipson IK. Goblet cell numbers and epithelial proliferation in the conjunctiva of patients with dry eye syndrome treated with cyclosporine. Arch Ophthalmol. 2002;120:330–337. - PubMed
    1. Turner K, Pflugfelder SC, Ji Z, et al. Interleukin-6 levels in the conjunctival epithelium of patients with dry eye disease treated with cyclosporine ophthalmic emulsion. Cornea. 2000;19:492–496. - PubMed

Publication types

MeSH terms

LinkOut - more resources