Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2007 Oct-Dec;38(4):21-38.

[A role of dopamine-dependent activity reorganizations in the cortico-basal ganglia-thalamocortical loops in visual attention (hypothetical mechanism)]

[Article in Russian]
  • PMID: 18064906
Review

[A role of dopamine-dependent activity reorganizations in the cortico-basal ganglia-thalamocortical loops in visual attention (hypothetical mechanism)]

[Article in Russian]
I G Sil'kis. Usp Fiziol Nauk. 2007 Oct-Dec.

Abstract

A mechanism of attention is proposed according to which its influence on visual processing is switched on by release of dopamine into the striatum. A dopamine release during involuntary attention is promoted by visual activation of striatonigral cells via the thalamus and subsequent disinhibition through the basal ganglia of the superior colliculus. A dopamine release during voluntary attention is promoted by activation of prefrontal cortex. The strengthening of responses of neocortical neurons to attended stimulus, and suppression of responses to other stimuli is the result of opposite modulatory action of dopamine on the efficacy of strong and weak corticostriatal inputs. This leads to changes in the output basal ganglia signals ("attentional filter") that exert disinhibitory and inhibitory influence (via the thalamus) on neocortical cells that initially were strongly and weakly activated by a stimulus, respectively. From proposed mechanism follows, that attention modulates only those components of responses of cortical neurons which latency exceeds the latency of reactions of dopaminergic cells (80-100 ms).

PubMed Disclaimer