Diversity, activity, and evolution of CRISPR loci in Streptococcus thermophilus
- PMID: 18065539
- PMCID: PMC2238196
- DOI: 10.1128/JB.01415-07
Diversity, activity, and evolution of CRISPR loci in Streptococcus thermophilus
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) are hypervariable loci widely distributed in prokaryotes that provide acquired immunity against foreign genetic elements. Here, we characterize a novel Streptococcus thermophilus locus, CRISPR3, and experimentally demonstrate its ability to integrate novel spacers in response to bacteriophage. Also, we analyze CRISPR diversity and activity across three distinct CRISPR loci in several S. thermophilus strains. We show that both CRISPR repeats and cas genes are locus specific and functionally coupled. A total of 124 strains were studied, and 109 unique spacer arrangements were observed across the three CRISPR loci. Overall, 3,626 spacers were analyzed, including 2,829 for CRISPR1 (782 unique), 173 for CRISPR2 (16 unique), and 624 for CRISPR3 (154 unique). Sequence analysis of the spacers revealed homology and identity to phage sequences (77%), plasmid sequences (16%), and S. thermophilus chromosomal sequences (7%). Polymorphisms were observed for the CRISPR repeats, CRISPR spacers, cas genes, CRISPR motif, locus architecture, and specific sequence content. Interestingly, CRISPR loci evolved both via polarized addition of novel spacers after exposure to foreign genetic elements and via internal deletion of spacers. We hypothesize that the level of diversity is correlated with relative CRISPR activity and propose that the activity is highest for CRISPR1, followed by CRISPR3, while CRISPR2 may be degenerate. Globally, the dynamic nature of CRISPR loci might prove valuable for typing and comparative analyses of strains and microbial populations. Also, CRISPRs provide critical insights into the relationships between prokaryotes and their environments, notably the coevolution of host and viral genomes.
Figures








Similar articles
-
Comparative Analysis of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) of Streptococcus thermophilus St-I and its Bacteriophage-Insensitive Mutants (BIM) Derivatives.Curr Microbiol. 2016 Sep;73(3):393-400. doi: 10.1007/s00284-016-1076-y. Epub 2016 Jul 5. Curr Microbiol. 2016. PMID: 27378131
-
Phage response to CRISPR-encoded resistance in Streptococcus thermophilus.J Bacteriol. 2008 Feb;190(4):1390-400. doi: 10.1128/JB.01412-07. Epub 2007 Dec 7. J Bacteriol. 2008. PMID: 18065545 Free PMC article.
-
CRISPR analysis of bacteriophage-insensitive mutants (BIMs) of industrial Streptococcus thermophilus--implications for starter design.J Appl Microbiol. 2010 Mar;108(3):945-955. doi: 10.1111/j.1365-2672.2009.04486.x. Epub 2009 Jul 20. J Appl Microbiol. 2010. PMID: 19709335
-
Genomic impact of CRISPR immunization against bacteriophages.Biochem Soc Trans. 2013 Dec;41(6):1383-91. doi: 10.1042/BST20130160. Biochem Soc Trans. 2013. PMID: 24256225 Review.
-
Analysis of CRISPR-Cas System in Streptococcus thermophilus and Its Application.Front Microbiol. 2018 Feb 20;9:257. doi: 10.3389/fmicb.2018.00257. eCollection 2018. Front Microbiol. 2018. PMID: 29515542 Free PMC article. Review.
Cited by
-
Characterization of CRISPR Spacer and Protospacer Sequences in Paenibacillus larvae and Its Bacteriophages.Viruses. 2021 Mar 11;13(3):459. doi: 10.3390/v13030459. Viruses. 2021. PMID: 33799666 Free PMC article.
-
Genomic and Phenotypic Analysis of Multidrug-Resistant Acinetobacter baumannii Clinical Isolates Carrying Different Types of CRISPR/Cas Systems.Pathogens. 2021 Feb 13;10(2):205. doi: 10.3390/pathogens10020205. Pathogens. 2021. PMID: 33668622 Free PMC article.
-
Electronic Circular Dichroism of the Cas9 Protein and gRNA:Cas9 Ribonucleoprotein Complex.Int J Mol Sci. 2021 Mar 13;22(6):2937. doi: 10.3390/ijms22062937. Int J Mol Sci. 2021. PMID: 33805827 Free PMC article.
-
Comparative Analysis of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) of Streptococcus thermophilus St-I and its Bacteriophage-Insensitive Mutants (BIM) Derivatives.Curr Microbiol. 2016 Sep;73(3):393-400. doi: 10.1007/s00284-016-1076-y. Epub 2016 Jul 5. Curr Microbiol. 2016. PMID: 27378131
-
A Novel Freshwater Cyanophage, Mae-Yong924-1, Reveals a New Family.Viruses. 2022 Jan 28;14(2):283. doi: 10.3390/v14020283. Viruses. 2022. PMID: 35215876 Free PMC article.
References
-
- Barrangou, R., C. Fremaux, P. Boyaval, M. Richards, H. Deveau, S. Moineau, D. A. Romero, and P. Horvath. 2007. CRISPR provides acquired resistance against viruses in prokaryotes. Science 3151709-1712. - PubMed
-
- Bolotin, A., B. Quinquis, P. Renault, A. Sorokin, S. D. Ehrlich, S. Kulakauskas, A. Lapidus, E. Goltsman, M. Mazur, G. D. Pusch, M. Fonstein, R. Overbeek, N. Kyrpides, B. Purnelle, D. Prozzi, K. Ngui, D. Masuy, F. Hancy, S. Burteau, M. Boutry, J. Delcour, A. Goffeau, and P. Hols. 2004. Complete sequence and comparative genome analysis of the dairy bacterium Streptococcus thermophilus. Nat. Biotechnol. 221554-1558. - PMC - PubMed
-
- Bolotin, A., B. Quinquis, A. Sorokin, and S. D. Ehrlich. 2005. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology 1512551-2561. - PubMed
-
- Bult, C. J., O. White, G. J. Olsen, L. Zhou, R. D. Fleischmann, G. G. Sutton, J. A. Blake, L. M. FitzGerald, R. A. Clayton, J. D. Gocayne, A. R. Kerlavage, B. A. Dougherty, J. F. Tomb, M. D. Adams, C. I. Reich, R. Overbeek, E. F. Kirkness, K. G. Weinstock, J. M. Merrick, A. Glodek, J. L. Scott, N. S. M. Geoghagen, J. F. Weidman, J. L. Fuhrmann, D. Nguyen, T. R. Utterback, J. M. Kelley, J. D. Peterson, P. W. Sadow, M. C. Hanna, M. D. Cotton, K. M. Roberts, M. A. Hurst, B. P. Kaine, M. Borodovsky, H. P. Klenk, C. M. Fraser, H. O. Smith, C. R. Woese, and J. C. Venter. 1996. Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science 2731058-1073. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources