Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007;45(12):1760-3.
doi: 10.1515/CCLM.2007.355.

Small ubiquitin-like modifier-1 (SUMO-1) modification of thymidylate synthase and dihydrofolate reductase

Affiliations

Small ubiquitin-like modifier-1 (SUMO-1) modification of thymidylate synthase and dihydrofolate reductase

Donald D Anderson et al. Clin Chem Lab Med. 2007.

Abstract

Background: Impairments in folate-mediated one-carbon metabolism are associated with pathologies and developmental anomalies, including cardiovascular disease, cancer, neurological disorders and neural tube defects. The mechanisms that detail the role of folate and one-carbon metabolism in these disorders remain to be established. Folate deficiency impairs folate-dependent thymidylate biosynthesis resulting in depleted dTTP levels, increased rates of uracil incorporation into DNA and genomic instability. Folate-dependent enzymes involved in the de novo thymidylate pathway include cytoplasmic serine hydroxymethyltransferase (cSHMT), thymidylate synthase (TS) and dihydrofolate reductase (DHFR). Previously, we demonstrated that cSHMT-derived folate activated one-carbon units are preferentially incorporated into thymidylate, and we provided evidence that this was achieved through modification with small ubiquitin-like modifier (SUMO) enabling SUMO-dependent nuclear localization of cSHMT during S-phase.

Methods and results: Here, we provide evidence that TS and DHFR are also substrates for UBC9-catalyzed SUMOylation in vitro by SUMO-1.

Conclusions: The SUMOylation of cSHMT, TS and DHFR provides a mechanism by which all three enzymes in the thymidylate synthesis pathway are directed and compartmentalized in the nucleus.

PubMed Disclaimer

MeSH terms

LinkOut - more resources