Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Feb 21;250(4):663-72.
doi: 10.1016/j.jtbi.2007.10.020. Epub 2007 Oct 23.

Neural rate equations for bursting dynamics derived from conductance-based equations

Affiliations

Neural rate equations for bursting dynamics derived from conductance-based equations

P A Robinson et al. J Theor Biol. .

Abstract

A method of obtaining rate equations from conductance-based equations is developed and applied to fast-spiking and bursting neocortical neurons. It involves splitting systems of conductance-based equations into fast and slow subsystems, and averaging the effects of fast terms that drive the slowly varying quantities by showing that their average is closely proportional to the firing rate. The dependence of the firing rate on the injected current is then approximated in the analysis. The resulting behavior of the slow variables is then substituted back into the fast equations, with the further approximation of replacing the fast voltages in these terms by effective values. For bursting neurons the method yields two coupled limit-cycle oscillators: a self-exciting oscillator for the slow variables that commences limit-cycle oscillations at a critical current and modulates a fast spike-generating oscillator, thereby leading to slowly modulated bursts with a group of spikes in each burst. The dynamics of these coupled oscillators are then verified against those of the conductance-based equations. Finally, it is shown how to place the results in a form suitable for use in mean-field equations for neural population dynamics.

PubMed Disclaimer

Publication types

LinkOut - more resources