Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2007:287:183-92; discussion 192-6.
doi: 10.1002/9780470725207.ch13.

Mitochondria and neurodegeneration

Affiliations
Review

Mitochondria and neurodegeneration

M Flint Beal. Novartis Found Symp. 2007.

Abstract

There is increasing evidence linking mitochondrial dysfunction to neurodegenerative diseases. Mitochondria are critical regulators of cell death, a key feature of neurodegeneration. Mutations in mitochondrial DNA and oxidative stress both contribute to ageing, which is the greatest risk factor for neurodegenerative diseases. This is the case in Alzheimer's disease, in which there is evidence that both beta-amyloid and the amyloid precursor protein may directly interact with mitochondria, leading to increased free radical production. In the case of Huntington's disease (HD), recent evidence suggests that the coactivator PGC1alpha, a key regulator of mitochondrial biogenesis in respiration, is down-regulated in patients with HD and in several animal models of this neurodegenerative disorder. In Parkinson's disease, the autosomal recessive genes parkin, DJ1 and PINK1 are all linked to either oxidative stress or mitochondrial dysfunction. In amyotrophic lateral sclerosis, there is strong evidence that mutant superoxide dismutase directly interacts with the outer mitochondrial membrane as well as the intermembrane space and matrix. Therefore, an impressive number of disease specific proteins interact with mitochondria. Therapies that target basic mitochondrial processes such as energy metabolism in free radical generation, or specific interactions of disease-related protein with mitochondria, hold great promise.

PubMed Disclaimer

MeSH terms

LinkOut - more resources