Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Feb 15;283(7):4061-8.
doi: 10.1074/jbc.M705605200. Epub 2007 Dec 12.

The O2-scavenging flavodiiron protein in the human parasite Giardia intestinalis

Affiliations
Free article

The O2-scavenging flavodiiron protein in the human parasite Giardia intestinalis

Adele Di Matteo et al. J Biol Chem. .
Free article

Abstract

The flavodiiron proteins (FDP) are widespread among strict or facultative anaerobic prokaryotes, where they are involved in the response to nitrosative and/or oxidative stress. Unexpectedly, FDPs were fairly recently identified in a restricted group of microaerobic protozoa, including Giardia intestinalis, the causative agent of the human infectious disease giardiasis. The FDP from Giardia was expressed, purified, and extensively characterized by x-ray crystallography, stopped-flow spectroscopy, respirometry, and NO amperometry. Contrary to flavorubredoxin, the FDP from Escherichia coli, the enzyme from Giardia has high O(2)-reductase activity (>40 s(-1)), but very low NO-reductase activity (approximately 0.2 s(-1)); O(2) reacts with the reduced protein quite rapidly (milliseconds) and with high affinity (K(m) < or = 2 microM), producing H(2)O. The three-dimensional structure of the oxidized protein determined at 1.9A resolution shows remarkable similarities with prokaryotic FDPs. Consistent with HPLC analysis, the enzyme is a dimer of dimers with FMN and the non-heme di-iron site topologically close at the monomer-monomer interface. Unlike the FDP from Desulfovibrio gigas, the residue His-90 is a ligand of the di-iron site, in contrast with the proposal that ligation of this histidine is crucial for a preferential specificity for NO. We propose that in G. intestinalis the primary function of FDP is to efficiently scavenge O(2), allowing this microaerobic parasite to survive in the human small intestine, thus promoting its pathogenicity.

PubMed Disclaimer

Publication types

Associated data