Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Jan;49(1):103-11.
doi: 10.2967/jnumed.107.045302. Epub 2007 Dec 12.

In vivo imaging of 64Cu-labeled polymer nanoparticles targeted to the lung endothelium

Affiliations
Free article

In vivo imaging of 64Cu-labeled polymer nanoparticles targeted to the lung endothelium

Raffaella Rossin et al. J Nucl Med. 2008 Jan.
Free article

Abstract

Nanoparticles (NPs) targeting the intercellular adhesion molecule 1 (ICAM-1) hold promise as a mean of delivering therapeutics to the pulmonary endothelium in patients with acute and chronic respiratory diseases. As these new materials become available, strategies are needed to understand their behavior in vivo. We have evaluated the use of (64)Cu and PET to noninvasively image the lung uptake and distribution of NPs coated with an anti-ICAM antibody.

Methods: Model fluorescent NPs were coated with a mixture of an anti-ICAM antibody (or nonspecific IgG) and (64)Cu-DOTA-IgG (where DOTA is 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid). Biodistribution and small-animal PET and CT studies were performed in healthy mice and in mice pretreated with lipopolysaccharides (LPSs). Metabolism studies were also performed to evaluate the stability of (64)Cu-labeled NPs in lungs in vivo.

Results: The lungs of mice administered anti-ICAM NPs labeled with (64)Cu were clearly imaged by small-animal PET 1, 4, and 24 h after administration. Both biodistribution and small-animal imaging showed a 3- to 4-fold higher uptake in the lungs of mice injected with ICAM-targeted NPs relative to that of the control group. Lung uptake was further enhanced by pretreating the mice with LPS, presumably because of ICAM-1 upregulation. However, an approximately 2-fold decrease in lung signal was observed in each experimental group over 24 h. Metabolism studies in lung tissues harvested from mice injected with (64)Cu-labeled anti-ICAM NPs showed considerable release of a small (64)Cu-radiometabolite from the NPs beginning as early as 1 h after injection. A decrease in lung fluorescence was also observed, most likely reflecting partial release of NPs from the lungs in vivo.

Conclusion: The use of small-animal PET to track (64)Cu-labeled nanostructures in vivo shows potential as a strategy for the preclinical screening of new NP drug delivery agents targeting the lung endothelium and other tissues. Future design optimization to prolong the stability of the radiolabel in vivo will further improve this promising approach.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources