Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2007 Dec:1122:185-96.
doi: 10.1196/annals.1403.013.

Neuroprotection at the nanolevel--Part II: Nanodevices for neuromodulation--deep brain stimulation and spinal cord injury

Affiliations
Review

Neuroprotection at the nanolevel--Part II: Nanodevices for neuromodulation--deep brain stimulation and spinal cord injury

Russell J Andrews. Ann N Y Acad Sci. 2007 Dec.

Abstract

Nanotechniques presented in this article's companion report are being multiplexed into nanodevices that promise to greatly advance our understanding and treatment of many nervous system disorders. Current neuromodulation techniques for deep brain stimulation have major drawbacks, such as large size (in comparison with ideal of small neuron group stimulation), lack of feedback monitoring of brain electrical activity, and high electrical current needs. Carbon nanotube nanoelectrode arrays address these drawbacks and offer the possibility of monitoring neurotransmitter levels at the synapse/neuronal level in real time. Such arrays can monitor and modulate electrochemical events occurring among neural networks, which should add greatly to our understanding of neuronal communication. A multiplex nanodevice for studying (and enhancing) axonal regeneration after spinal cord injury is also being developed. The nanotechniques described in the companion piece are combined in a micron-sized neural growth tube lined with nanodevices through which the regenerating axon extends--allowing continuous monitoring and modulation of the axon's electrochemical environment plus directional guidance with a biodegradable nanoscaffold. Multifunction nanodevices provide opportunities for neuronal (and subneuronal) monitoring and modulation that will enhance neuroprotection and neurorepair far beyond the micro- and macrolevel techniques used heretofore.

PubMed Disclaimer

Substances

LinkOut - more resources