Short-wavelength light sensitivity of circadian, pupillary, and visual awareness in humans lacking an outer retina
- PMID: 18082405
- PMCID: PMC2151130
- DOI: 10.1016/j.cub.2007.11.034
Short-wavelength light sensitivity of circadian, pupillary, and visual awareness in humans lacking an outer retina
Abstract
As the ear has dual functions for audition and balance, the eye has a dual role in detecting light for a wide range of behavioral and physiological functions separate from sight. These responses are driven primarily by stimulation of photosensitive retinal ganglion cells (pRGCs) that are most sensitive to short-wavelength ( approximately 480 nm) blue light and remain functional in the absence of rods and cones. We examined the spectral sensitivity of non-image-forming responses in two profoundly blind subjects lacking functional rods and cones (one male, 56 yr old; one female, 87 yr old). In the male subject, we found that short-wavelength light preferentially suppressed melatonin, reset the circadian pacemaker, and directly enhanced alertness compared to 555 nm exposure, which is the peak sensitivity of the photopic visual system. In an action spectrum for pupillary constriction, the female subject exhibited a peak spectral sensitivity (lambda(max)) of 480 nm, matching that of the pRGCs but not that of the rods and cones. This subject was also able to correctly report a threshold short-wavelength stimulus ( approximately 480 nm) but not other wavelengths. Collectively these data show that pRGCs contribute to both circadian physiology and rudimentary visual awareness in humans and challenge the assumption that rod- and cone-based photoreception mediate all "visual" responses to light.
Figures




Comment in
-
Non-visual photoreception: sensing light without sight.Curr Biol. 2008 Jan 8;18(1):R38-9. doi: 10.1016/j.cub.2007.11.027. Curr Biol. 2008. PMID: 18177714
Similar articles
-
Effect of circadian clock gene mutations on nonvisual photoreception in the mouse.Invest Ophthalmol Vis Sci. 2012 Jan 25;53(1):454-60. doi: 10.1167/iovs.11-8717. Invest Ophthalmol Vis Sci. 2012. PMID: 22159024 Free PMC article.
-
Intrinsically photosensitive melanopsin retinal ganglion cell contributions to the pupillary light reflex and circadian rhythm.Clin Exp Optom. 2010 May;93(3):137-49. doi: 10.1111/j.1444-0938.2010.00479.x. Clin Exp Optom. 2010. PMID: 20557555 Review.
-
Circadian control of the pupillary light responses in an avian model of blindness, the GUCY1* chickens.Invest Ophthalmol Vis Sci. 2015 Jan 8;56(2):730-7. doi: 10.1167/iovs.14-15481. Invest Ophthalmol Vis Sci. 2015. PMID: 25574051
-
[Pupil and melanopsin photoreception].Nippon Ganka Gakkai Zasshi. 2013 Mar;117(3):246-68; discussion 269. Nippon Ganka Gakkai Zasshi. 2013. PMID: 23631256 Review. Japanese.
-
Melanopsin is required for non-image-forming photic responses in blind mice.Science. 2003 Jul 25;301(5632):525-7. doi: 10.1126/science.1086179. Epub 2003 Jun 26. Science. 2003. PMID: 12829787
Cited by
-
Melatonin: Both a Messenger of Darkness and a Participant in the Cellular Actions of Non-Visible Solar Radiation of Near Infrared Light.Biology (Basel). 2023 Jan 6;12(1):89. doi: 10.3390/biology12010089. Biology (Basel). 2023. PMID: 36671781 Free PMC article. Review.
-
Designing artificial environments for preterm infants based on circadian studies on pregnant uterus.Front Endocrinol (Lausanne). 2013 Sep 4;4:113. doi: 10.3389/fendo.2013.00113. Front Endocrinol (Lausanne). 2013. PMID: 24027556 Free PMC article. Review.
-
Second sight? Ecker JL, Dumitrescu ON, Wong KY, Alam NM, Chen SK, LeGates T, Renna JM, Prusky GT, Berson DM, Hattar S (2010) Melanopsin-expressing retinal ganglion-cell photoreceptors: cellular diversity and role in pattern vision. Neuron 67:49-60.Graefes Arch Clin Exp Ophthalmol. 2011 Mar;249(3):313-4. doi: 10.1007/s00417-011-1631-y. Epub 2011 Feb 19. Graefes Arch Clin Exp Ophthalmol. 2011. PMID: 21336701 No abstract available.
-
Association between the melanopsin gene polymorphism OPN4*Ile394Thr and sleep/wake timing in Japanese university students.J Physiol Anthropol. 2014 May 12;33(1):9. doi: 10.1186/1880-6805-33-9. J Physiol Anthropol. 2014. PMID: 24887407 Free PMC article.
-
Thinning of the inner and outer retinal layers, including the ganglion cell layer and photoreceptor layers, in obstructive sleep apnea and hypopnea syndrome unrelated to the disease severity.Int Ophthalmol. 2021 Nov;41(11):3559-3569. doi: 10.1007/s10792-021-01937-4. Epub 2021 Jun 25. Int Ophthalmol. 2021. PMID: 34170478
References
-
- Czeisler C.A., Shanahan T.L., Klerman E.B., Martens H., Brotman D.J., Emens J.S., Klein T., Rizzo J.F., 3rd Suppression of melatonin secretion in some blind patients by exposure to bright light. N. Engl. J. Med. 1995;332:6–11. - PubMed
-
- Ruberg F.L., Skene D.J., Hanifin J.P., Rollag M.D., English J., Arendt J., Brainard G.C. Melatonin regulation in humans with color vision deficiencies. J. Clin. Endocrinol. Metab. 1996;81:2980–2985. - PubMed
-
- Lockley S.W., Skene D.J., Tabandeh H., Bird A.C., Defrance R., Arendt J. Relationship between melatonin rhythms and visual loss in the blind. J. Clin. Endocrinol. Metab. 1997;82:3763–3770. - PubMed
-
- Freedman M.S., Lucas R.J., Soni B., von Schantz M., Munoz M., David-Gray Z., Foster R. Regulation of mammalian circadian behavior by non-rod, non-cone, ocular photoreceptors. Science. 1999;284:502–504. - PubMed
-
- Lucas R.J., Freedman M.S., Munoz M., Garcia-Fernandez J.M., Foster R.G. Regulation of the mammalian pineal by non-rod, non-cone, ocular photoreceptors. Science. 1999;284:505–507. - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials