Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Feb;7(2):120-4.
doi: 10.1038/nmat2083. Epub 2007 Dec 16.

Effects of elastic anisotropy on strain distributions in decahedral gold nanoparticles

Affiliations

Effects of elastic anisotropy on strain distributions in decahedral gold nanoparticles

Craig L Johnson et al. Nat Mater. 2008 Feb.

Abstract

Metallic nanoparticles exhibit exceptional optoelectronic properties with applications in plasmonics, biosensing and nanomedicine. Recently, new synthesis techniques have enabled precise control over the sizes and shapes of metal nanoparticles, occasionally leading to morphologies that cannot be properly characterized using standard techniques. An example is five-fold-twinned decahedral Au nanoparticles, which are intrinsically strained as a result of their unique geometry. Various competing models have been proposed to predict the strain states of such nanoparticles. Here, we present a detailed analysis of the internal structure of a decahedral Au nanoparticle using aberration-corrected high-resolution electron microscopy and strain mapping. Our measurements confirm the presence of a disclination, which is consistent with the commonly accepted strain model. However, we also observed shear gradients, which are absent from the models. By comparing our local strain determinations with finite-element calculations, we show the effect of elastic anisotropy on the strain state in these nanoparticles.

PubMed Disclaimer

LinkOut - more resources