Predictive coding and the slowness principle: an information-theoretic approach
- PMID: 18085988
- DOI: 10.1162/neco.2008.01-07-455
Predictive coding and the slowness principle: an information-theoretic approach
Abstract
Understanding the guiding principles of sensory coding strategies is a main goal in computational neuroscience. Among others, the principles of predictive coding and slowness appear to capture aspects of sensory processing. Predictive coding postulates that sensory systems are adapted to the structure of their input signals such that information about future inputs is encoded. Slow feature analysis (SFA) is a method for extracting slowly varying components from quickly varying input signals, thereby learning temporally invariant features. Here, we use the information bottleneck method to state an information-theoretic objective function for temporally local predictive coding. We then show that the linear case of SFA can be interpreted as a variant of predictive coding that maximizes the mutual information between the current output of the system and the input signal in the next time step. This demonstrates that the slowness principle and predictive coding are intimately related.
Similar articles
-
Spatiotemporal burst coding for extracting features of spatiotemporally varying stimuli.Biol Cybern. 2007 Oct;97(4):293-305. doi: 10.1007/s00422-007-0175-z. Epub 2007 Sep 6. Biol Cybern. 2007. PMID: 17805559
-
Sparse coding of sensory inputs.Curr Opin Neurobiol. 2004 Aug;14(4):481-7. doi: 10.1016/j.conb.2004.07.007. Curr Opin Neurobiol. 2004. PMID: 15321069 Review.
-
Optimal coding predicts attentional modulation of activity in neural systems.Neural Comput. 2007 May;19(5):1295-312. doi: 10.1162/neco.2007.19.5.1295. Neural Comput. 2007. PMID: 17381267
-
Recoding patterns of sensory input: higher-order features and the function of nonlinear dendritic trees.Neural Comput. 2008 Aug;20(8):2000-36. doi: 10.1162/neco.2008.04-07-511. Neural Comput. 2008. PMID: 18336083
-
The systems analysis approach to mechanosensory coding.Biol Cybern. 2009 Jun;100(6):417-26. doi: 10.1007/s00422-008-0262-9. Epub 2009 Jan 20. Biol Cybern. 2009. PMID: 19153763 Review.
Cited by
-
Engage, don't preach: Active learning triggers climate action.Energy Res Soc Sci. 2020 Dec;70:101779. doi: 10.1016/j.erss.2020.101779. Epub 2020 Oct 9. Energy Res Soc Sci. 2020. PMID: 33052304 Free PMC article. Review.
-
Sensory cortex is optimized for prediction of future input.Elife. 2018 Jun 18;7:e31557. doi: 10.7554/eLife.31557. Elife. 2018. PMID: 29911971 Free PMC article.
-
Effects of timing and movement uncertainty implicate the temporo-parietal junction in the prediction of forthcoming motor actions.Neuroimage. 2009 Aug 15;47(2):667-77. doi: 10.1016/j.neuroimage.2009.04.065. Epub 2009 May 3. Neuroimage. 2009. PMID: 19398017 Free PMC article.
-
Incongruence effects in crossmodal emotional integration.Neuroimage. 2011 Feb 1;54(3):2257-66. doi: 10.1016/j.neuroimage.2010.10.047. Epub 2010 Oct 23. Neuroimage. 2011. PMID: 20974266 Free PMC article.
-
Efficient Temporal Coding in the Early Visual System: Existing Evidence and Future Directions.Front Comput Neurosci. 2022 Jul 4;16:929348. doi: 10.3389/fncom.2022.929348. eCollection 2022. Front Comput Neurosci. 2022. PMID: 35874317 Free PMC article. Review.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources