Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Jan;5(1):99-105.
doi: 10.1016/j.hrthm.2007.09.015. Epub 2007 Sep 19.

Cardiac sodium channel mutation in atrial fibrillation

Affiliations

Cardiac sodium channel mutation in atrial fibrillation

Patrick T Ellinor et al. Heart Rhythm. 2008 Jan.

Abstract

Background: Mutations in the sodium channel SCN5A have been implicated in many cardiac disorders, including the long QT syndrome, Brugada syndrome, conduction system disease, and dilated cardiomyopathy with atrial arrhythmias.

Objective: In view of the pleiotropic effects of SCN5A mutations, the purpose of this study was to examine a cohort of patients with familial atrial fibrillation (AF) for mutations in the SCN5A gene.

Methods: Probands with AF were enrolled in the study between June 1, 2001 and February 10, 2004. Each patient underwent a standardized evaluation, which included an interview, physical examination, ECG, echocardiogram, and blood sample for genetic analysis. Direct sequencing of the coding region of SCN5A was used to screen for mutations in genomic DNA.

Results: One hundred eighty-nine patients with AF were enrolled during the study period. From this cohort, a subset of 57 probands with a family history of AF in at least one first-degree relative was studied. Forty-seven subjects were men (82%); 45 had paroxysmal AF (79%). Echocardiography revealed ejection fraction 62% +/- 6.4 % and left atrial dimension 40 +/- 6.9 mm. A single mutation (N1986K) was observed in one family but was not present in more than 600 control chromosomes. Expression of the N1986K mutant in Xenopus oocytes revealed a hyperpolarizing shift in channel steady-state inactivation.

Conclusion: In a cohort with familial AF, a single SCN5A mutation causing the arrhythmia in one kindred was identified. These data extend the range of phenotypes observed with SCN5A mutations and suggest that variation in the SCN5A gene is not a major cause of familial AF.

PubMed Disclaimer

Publication types

LinkOut - more resources