Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Apr;29(2):137-46.
doi: 10.1016/s1467-8039(00)00025-6.

Elastic joints in dermapteran hind wings: materials and wing folding

Affiliations

Elastic joints in dermapteran hind wings: materials and wing folding

F Haas et al. Arthropod Struct Dev. 2000 Apr.

Abstract

Representatives of Dermaptera probably have the most unusual hind wing venation and folding pattern among insects. Both correlate with unusual wing folding mechanics, in which folding is achieved from within the wing and unfolding is done by the cerci. In this account, the hind wings of the earwig Forficula auricularia were studied by means of bright field and fluorescence microscopy. Resilin, a rubber-like protein, was revealed in several, clearly defined patches. It occurs dorsally in the radiating veins, but ventrally in the intercalary vein. This distribution determines the folding direction, and resilin is the major driving mechanism for wing folding. Resilin stores elastic energy in broadened vein patches and along the folds. At the other locations, the mid-wing mechanism and central area, the primary function of resilin is suggested to be prevention of material failure. The arrangement of resilin patches is such that the wing cannot be unfolded from the thorax proper but must be unfolded by the cerci. In Dermaptera, the antagonistic movements of folding and unfolding are achieved in two different ways, resilin and cerci. To our knowledge this is unique.

PubMed Disclaimer

LinkOut - more resources