Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Dec 15;67(24):11712-20.
doi: 10.1158/0008-5472.CAN-07-2223.

mTORC2 activity is elevated in gliomas and promotes growth and cell motility via overexpression of rictor

Affiliations

mTORC2 activity is elevated in gliomas and promotes growth and cell motility via overexpression of rictor

Janine Masri et al. Cancer Res. .

Abstract

mTORC2 is a multimeric kinase composed of the mammalian target of rapamycin kinase (mTOR), mLST8, mSin1, and rictor. The complex is insensitive to acute rapamycin exposure and has shown functions in controlling cell growth and actin cytoskeletal assembly. mTORC2 has recently been shown to phosphorylate and activate Akt. Because approximately 70% of gliomas harbor high levels of activated Akt, we investigated whether mTORC2 activity was elevated in gliomas. In this study, we found that mTORC2 activity was elevated in glioma cell lines as well as in primary tumor cells as compared with normal brain tissue (P < 0.05). Moreover, we found that rictor protein and mRNA levels were also elevated and correlated with increased mTORC2 activity. Overexpression of rictor in cell lines led to increased mTORC2 assembly and activity. These lines exhibited increased anchorage-independent growth in soft agar, increased S-phase cell cycle distribution, increased motility, and elevated integrin beta(1) and beta(3) expression. In contrast, small interfering RNA-mediated knockdown of rictor inhibited these oncogenic activities. Protein kinase C alpha (PKC alpha) activity was shown to be elevated in rictor-overexpressing lines but reduced in rictor-knockdown clones, consistent with the known regulation of actin organization by mTORC2 via PKC alpha. Xenograft studies using these cell lines also supported a role for increased mTORC2 activity in tumorigenesis and enhanced tumor growth. In summary, these data suggest that mTORC2 is hyperactivated in gliomas and functions in promoting tumor cell proliferation and invasive potential due to increased complex formation as a result of the overexpression of rictor.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources