Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2008 Mar;324(3):1196-203.
doi: 10.1124/jpet.107.133975. Epub 2007 Dec 18.

Doxycycline attenuates isoproterenol- and transverse aortic banding-induced cardiac hypertrophy in mice

Affiliations
Comparative Study

Doxycycline attenuates isoproterenol- and transverse aortic banding-induced cardiac hypertrophy in mice

Mounir Errami et al. J Pharmacol Exp Ther. 2008 Mar.

Abstract

The United States Food and Drug Administration-approved antibiotic doxycycline (DOX) inhibits matrix metalloproteases, which contribute to the development of cardiac hypertrophy (CH). We hypothesized that DOX might serve as a treatment for CH. The efficacy of DOX was tested in two mouse models of CH: induced by the beta-adrenergic agonist isoproterenol (ISO) and induced by transverse aortic banding. DOX significantly attenuated CH in these models, causing a profound reduction of the hypertrophic phenotype and a lower heart/body weight ratio (p < 0.05, n >/= 6). As expected, ISO increased matrix metalloprotease (MMP) 2 and 9 activities, and administration of DOX reversed this effect. Transcriptional profiles of normal, ISO-, and ISO + DOX-treated mice were examined using microarrays, and the results were confirmed by real-time reverse transcriptase-polymerase chain reaction. Genes (206) were differentially expressed between normal and ISO mice that were reversibly altered between ISO- and ISO + DOX-treated mice, indicating their potential role in CH development and DOX-induced improvement. These genes included those involved in the regulation of cell proliferation and fate, stress, and immune responses, cytoskeleton and extracellular matrix organization, and cardiac-specific signal transduction. The overall gene expression profile suggested that MMP2/9 inactivation was not the only mechanism whereby DOX exerts its beneficial effects. Western blot analysis identified potential signaling events associated with CH, including up-regulation of endothelial differentiation sphingolipid G-protein-coupled receptor 1 receptor and activation of extracellular signal-regulated kinase, p38, and the transcription factor activating transcription factor-2, which were reduced after administration of DOX. These results suggest that DOX might be evaluated as a potential CH therapeutic and also provide potential signaling mechanisms to investigate in the context of CH phenotype development and regression.

PubMed Disclaimer

Publication types

LinkOut - more resources