Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2008 Jan;4(1):38-46.
doi: 10.1038/ncpneph0689.

Mechanisms of Disease: the kidney-specific chloride channels ClCKA and ClCKB, the Barttin subunit, and their clinical relevance

Affiliations
Review

Mechanisms of Disease: the kidney-specific chloride channels ClCKA and ClCKB, the Barttin subunit, and their clinical relevance

Bernhard K Krämer et al. Nat Clin Pract Nephrol. 2008 Jan.

Abstract

Rodent ClC-K1 and ClC-K2, and their respective human orthologs ClCKA and ClCKB, are chloride channels specific to the kidney (and inner ear); Barttin is their functionally important subunit. ClC-K1 is predominantly localized to the thin ascending limb of the loop of Henle. ClC-K2 is expressed more broadly in the distal nephron; expression levels are highest along the thick ascending limb of the loop of Henle and distal convoluted tubule. Expression of ClC-K1 is upregulated by dehydration and downregulated by the diuretic furosemide, whereas expression of ClC-K2 is upregulated by furosemide and downregulated by high salt levels. ClCKA is important for maintenance of the corticomedullary osmotic gradient and the kidney's capacity to concentrate urine. If its ortholog, ClC-K1, is nonfunctional in mice, renal diabetes insipidus develops. ClCKB is a key determinant of tubular reabsorption of chloride and electrolytes along the distal tubule. A severe salt-losing tubulopathy (Bartter syndrome type III) develops if ClCKB is nonfunctional, whereas a common genetic variant of the CLCNKB gene that leads to increased activity of ClCKB results in salt-dependent hypertension. Disruption of the gene encoding Barttin, BSND, results in a 'double knockout' of the functions of both ClCKA and ClCKB, manifesting as Bartter syndrome type IV with sensorineural deafness and an especially severe salt-losing phenotype.

PubMed Disclaimer

Publication types

LinkOut - more resources