Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2007;8(12):233.
doi: 10.1186/gb-2007-8-12-233.

Gene prediction: compare and CONTRAST

Affiliations
Review

Gene prediction: compare and CONTRAST

Paul Flicek. Genome Biol. 2007.

Abstract

CONTRAST, a new gene-prediction algorithm that uses sophisticated machine-learning techniques, has pushed de novo prediction accuracy to new heights, and has significantly closed the gap between de novo and evidence-based methods for human genome annotation.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Increase in the accuracy of de novo gene prediction over time. The gene sensitivity and specificity and the exon sensitivity and specificity on the EGASP test set [5] are shown for several programs by year of initial publication. Included are GENSCAN (1997), TWINSCAN (2001), N-SCAN (2005) and CONTRAST (2007). Note the significant decrease in false positive predictions (as measured by the rise in TWINSCAN's exon specificity) with the inital use of evolutionarily related genome sequences. By comparison, the accuracy of the Ensembl evidence-based gene predictions used in the EGASP experiment at the gene level were 71.6% sensitivity and 67.3% specificity and 77.5% sensitivity and 82.7% specificity at the exon level.

Similar articles

Cited by

References

    1. Gross SS, Do CB, Sirota M, Batzoglou S. CONTRAST: A discriminative, phylogeny-free approach to multiple informant de novo gene prediction. Genome Biol. 2007;8(12):r269. - PMC - PubMed
    1. Brent MR. Genome annotation past, present, and future: how to define an ORF at each locus. Genome Res. 2005;15:1777–1786. doi: 10.1101/gr.3866105. - DOI - PubMed
    1. Burge C, Karlin S. Prediction of complete gene structures in human genomic DNA. J Mol Biol. 1997;268:78–94. doi: 10.1006/jmbi.1997.0951. - DOI - PubMed
    1. Flicek P, Keibler E, Hu P, Korf I, Brent MR. Leveraging the mouse genome for gene prediction in human: from whole-genome shotgun reads to a global synteny map. Genome Res. 2003;13:46–54. doi: 10.1101/gr.830003. - DOI - PMC - PubMed
    1. Guigó R, Flicek P, Abril JF, Reymond A, Lagarde J, Denoeud F, Antonarakis S, Ashburner M, Bajic VB, Birney E, et al. EGASP: the human ENCODE Genome Annotation Assessment Project. Genome Biol. 2006;7(Suppl 1):S2. doi: 10.1186/gb-2006-7-s1-s2. - DOI - PMC - PubMed

LinkOut - more resources