Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Mar;42(3):229-45.
doi: 10.1016/j.artmed.2007.10.004. Epub 2007 Dec 21.

Latent tree models and diagnosis in traditional Chinese medicine

Affiliations

Latent tree models and diagnosis in traditional Chinese medicine

Nevin L Zhang et al. Artif Intell Med. 2008 Mar.

Abstract

Objective: TCM (traditional Chinese medicine) is an important avenue for disease prevention and treatment for the Chinese people and is gaining popularity among others. However, many remain skeptical and even critical of TCM because of a number of its shortcomings. One key shortcoming is the lack of objective diagnosis standards. We endeavor to alleviate this shortcoming using machine learning techniques.

Method: TCM diagnosis consists of two steps, patient information gathering and syndrome differentiation. We focus on the latter. When viewed as a black box, syndrome differentiation is simply a classifier that classifies patients into different classes based on their symptoms. A fundamental question is: do those classes exist in reality? To seek an answer to the question from the machine learning perspective, one would naturally use cluster analysis. Previous clustering methods are unable to cope with the complexity of TCM. We have therefore developed a new clustering method in the form of latent tree models. We have conducted a case study where we first collected a data set about a TCM domain called kidney deficiency and then used latent tree models to analyze the data set.

Results: Our analysis has found natural clusters in the data set that correspond well to TCM syndrome types. This is an important discovery because (1) it provides statistical validation to TCM syndrome types and (2) it suggests the possibility of establishing objective and quantitative diagnosis standards for syndrome differentiation. In this paper, we provide a summary of research work on latent tree models and report the aforementioned case study.

PubMed Disclaimer

Publication types

LinkOut - more resources