Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1976 Aug;39(2):191-9.
doi: 10.1161/01.res.39.2.191.

Influence of 5- and 6-hydroxydopamine on adrenergic transmission and nerve terminal morphology in the canine pulmonary vascular bed

Free article

Influence of 5- and 6-hydroxydopamine on adrenergic transmission and nerve terminal morphology in the canine pulmonary vascular bed

P J Kadowitz et al. Circ Res. 1976 Aug.
Free article

Abstract

We studied the effects of 5- and 6-hydroxydopamine on adrenergic neurotransmission, fluorescence histochemistry, and nerve terminal ultrastructure in the canine pulmonary vascular bed. Fluorescence histochemistry on stretched preparations and sections of intrapulmonary artery and vein demonstrated that these vessels are well supplied with adrenergic nerves electron microscopy revealed adrenergic terminals in the adventitia and outer third of the media in the artery, but only in the adventitia in the vein. Adrenergic terminals in artery and vein contained many small and a few large dense-core vesicles. At least 20% of the terminals in the artery contained many small agranular vesicles and a few large opaque vesicles; this suggests that they were of the cholinergic type; Such terminals were not found in intrapulmonary veins. Under conditions of controlled blood flow, stimulation of the sympathetic nerves to the lung and intralobar injection of norepinephrine increased pressure in the perfused lobar artery and small intrapulmonary vein in a stimulus-related manner. The rise in pressure in the lobar artery and vein in response to nerve stimulation was blocked after administration of either 5- and 6-hydroxydopamine; Neither agent modified the response of the pulmonary vascular bed to norepinephrine; In contrast, the rise in pressure in the lobar artery and vein in response to both norepinephrine and to nerve stimulation was blocked by phenoxybenzamine, an alpha-receptor blocking agent. The attenuated neurogenic vasoconstrictor response in dogs treated with 5- and 6-hydroxydopamine was associated with a marked decrease in intensity of fluorescence of the abundant adrenergic innervation in both intrapulmonary artery and vein, and with the appearance of an osmiophilic material in dense-core vesicles of adrenergic terminals in artery and vein. We believe that these data suggest that 5- and 6-hydroxydopamine interfere with adrenergic transmission in intrapulmonary vessels by depleting norepinephrine from adrenergic terminals. Furthermore, we conclude from hemodynamic, histochemical, and ultrastructural studies that vasomotor tone in the pulmonary vascular bed can be regulated by the sympathetic nervous system.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources