Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1976 Aug;35(10):2124-30.

Do evolutionary changes in cytochrome c structure reflect functional adaptations?

  • PMID: 181272
Comparative Study

Do evolutionary changes in cytochrome c structure reflect functional adaptations?

E Margoliash et al. Fed Proc. 1976 Aug.

Abstract

Following the demonstration that the rate of evolutionary change in the amino acid sequences of cytochromes c of eukaryotic species was not constant either for a single line of phylogenetic descent during different evolutionary intervals or for separate lines of descent, the concept that neutral mutations account for the vast majority of the evolutionary variations could no longer be accepted. Previous studies had shown that all eukaryotic cytochromes c tested appeared to be functionally indistinguishable in their reaction with mitochondrial respiratory chain components. However, an examination of the kinetics at low ionic strength led to the discovery of a high affinity reaction of cytochrome c with cytochrome c oxidase that revealed large differences in activity between the cytochromes of the horse, baker's yeast and the protist Euglena. Observed Km values for this reaction of 10(-7) to 10(-8) M appear to represent actual dissociation constants, as demonstrated by direct binding studies of cytochrome c with purified cytochrome c oxidase. The high affinity reaction is sensitive to ionic strength and inhibited by ADP and ATP in the range of physiological concentrations, ATP being three times as effective as ADP. The possibility is discussed that this effect of ATP on cytochrome c binding to its oxidase could provide the basis of a mechanism for mitochondrial respiratory control. The demonstration of differences between cytochrome c of various species in this kinetic system opens the way to a systematic study of the possible evolutionary adaptations of cytochromes c to their oxidases.

PubMed Disclaimer

Similar articles

Cited by

Publication types

Substances