Physical and binding properties of large fragments of human serum albumin
- PMID: 18136
- PMCID: PMC1164727
- DOI: 10.1042/bj1630477
Physical and binding properties of large fragments of human serum albumin
Abstract
Three large fragments of human serum albumin were produced by peptic digestion of the native protein [Geisow & Beaven (1977) Biochem. J. 161, 619-625]. Fragment P44 represents residues 1-386 and fragments P29 and P31 represent residues 49-307 and residues 308-584 respectively of the albumin molecule. The large N-terminal fragment P44 has a similar percentage of alpha-helix to stored defatted albumin, although the alpha-helix content of all the fragments is significantly less than that of freshly prepared albumin. The fragment P44 appears to account for all the binding of the hydrophobic probe 8-anilinonaphthalene-1-sulphonate to albumin. N-Acetyl-L-tryptophan binds to this fragment and displaces one of the bound molecules of 8-anilinonaphthalene-1-sulphonate. Bilirubin binds to fragments P44 and P29, and the complexes show similar circular-dichroism spectra to that of the complex between bilirubin and whole albumin. These results are in agreement with affinity-labeling work on albumin with reactive ligands where substitution occurs in the N-terminal region of the molecule. The sharp conformational transitional transition in albumin which is observed between pH4 and 3.5 was absent from the fragments. This isomerization, usually called the N-F transition, probably occurs in intact albumin as a result of the unfolding or separation of the C-terminal third of the protein from the remainder of the molecule.
Similar articles
-
Fragments of bovine serum albumin produced by limited proteolysis. Conformation and ligand binding.Biochemistry. 1975 Oct 21;14(21):4578-83. doi: 10.1021/bi00692a004. Biochemistry. 1975. PMID: 1237311
-
Drug-binding and other physicochemical properties of a large tryptic and a large peptic fragment of human serum albumin.Biochim Biophys Acta. 1988 Mar 2;953(1):37-47. doi: 10.1016/0167-4838(88)90007-6. Biochim Biophys Acta. 1988. PMID: 3124878
-
Location and characterization of the warfarin binding site of human serum albumin. A comparative study of two large fragments.Biochem Pharmacol. 1988 Oct 15;37(20):3905-9. doi: 10.1016/0006-2952(88)90072-x. Biochem Pharmacol. 1988. PMID: 3190737
-
Spectroscopic properties of bilirubin-human serum albumin complexes: a stoichiometric analysis.Arch Biochem Biophys. 1986 Jan;244(1):273-84. doi: 10.1016/0003-9861(86)90117-7. Arch Biochem Biophys. 1986. PMID: 3947061
-
Lack of N--F transition in the N-terminal fragment (domain I + II) of bovine serum albumin.Eur J Biochem. 1984 Jun 15;141(3):473-5. doi: 10.1111/j.1432-1033.1984.tb08216.x. Eur J Biochem. 1984. PMID: 6745254
Cited by
-
Photoactivated covalent binding of [3H]bilirubin to human serum albumin.Biochem J. 1979 Sep 1;181(3):779-81. doi: 10.1042/bj1810779. Biochem J. 1979. PMID: 518557 Free PMC article.
-
The Janus face of PAMAM dendrimers used to potentially cure nonenzymatic modifications of biomacromolecules in metabolic disorders-a critical review of the pros and cons.Molecules. 2013 Nov 7;18(11):13769-811. doi: 10.3390/molecules181113769. Molecules. 2013. PMID: 24213655 Free PMC article. Review.
-
Lysine residue 240 of human serum albumin is involved in high-affinity binding of bilirubin.Biochem J. 1978 May 1;171(2):453-9. doi: 10.1042/bj1710453. Biochem J. 1978. PMID: 656055 Free PMC article.
-
Existence of different structural intermediates on the fibrillation pathway of human serum albumin.Biophys J. 2009 Mar 18;96(6):2353-70. doi: 10.1016/j.bpj.2008.12.3901. Biophys J. 2009. PMID: 19289061 Free PMC article.
-
Effects of aliphatic fatty acids on the binding of Phenol Red to human serum albumin.Biochem J. 1981 Jun 1;195(3):603-13. doi: 10.1042/bj1950603. Biochem J. 1981. PMID: 7316975 Free PMC article.
References
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources