Shotgun lipidomics identifies a paired rule for the presence of isomeric ether phospholipid molecular species
- PMID: 18159251
- PMCID: PMC2147047
- DOI: 10.1371/journal.pone.0001368
Shotgun lipidomics identifies a paired rule for the presence of isomeric ether phospholipid molecular species
Abstract
Background: Ether phospholipids are abundant membrane constituents present in electrically active tissues (e.g., heart and the brain) that play important roles in cellular function. Alterations of ether phospholipid molecular species contents are associated with a number of genetic disorders and human diseases.
Methodology/principal findings: Herein, the power of shotgun lipidomics, in combination with high mass accuracy/high resolution mass spectrometry, was explored to identify a paired rule for the presence of isomeric ether phospholipid molecular species in cellular lipidomes. The rule predicts that if an ether phospholipid A'-B is present in a lipidome, its isomeric counterpart B'-A is also present (where the ' represents an ether linkage). The biochemical basis of this rule results from the fact that the enzymes which participate in either the sequential oxidation of aliphatic alcohols to fatty acids, or the reduction of long chain fatty acids to aliphatic alcohols (metabolic precursors of ether lipid synthesis), are not entirely selective with respect to acyl chain length or degree of unsaturation. Moreover, the enzymatic selectivity for the incorporation of different aliphatic chains into the obligatory precursor of ether lipids (i.e., 1-O-alkyl-glycero-3-phosphate) is also limited.
Conclusions/significance: This intrinsic amplification of the number of lipid molecular species present in biological membranes predicted by this rule and demonstrated in this study greatly expands the number of ether lipid molecular species present in cellular lipidomes. Application of this rule to mass spectrometric analyses provides predictive clues to the presence of specific molecular species and greatly expands the number of identifiable and quantifiable ether lipid species present in biological samples. Through appropriate alterations in the database, use of the paired rule increases the number of identifiable metabolites in metabolic networks, thereby facilitating identification of biomarkers presaging disease states.
Conflict of interest statement
Figures








References
-
- Horrocks LA, Sharma M. Plasmalogens and O-alkyl glycerophospholipids. In: Hawthorne JN, Ansell GB, editors. Phospholipids. Amsterdam, The Netherlands: Elsevier Biomedical Press; 1982. pp. 51–93.
-
- Snyder F. Ether-linked lipids and their bioactive species: occurrence, chemistry, metabolism, regulation, and function. In: Vance DE, Vance JE, editors. Biochemistry of Lipids, Lipoproteins and Membranes. New York: Elsevier Science B.V; 1996. pp. 183–210.
-
- Gross RW. High plasmalogen and arachidonic acid content of canine myocardial sarcolemma: a fast atom bombardment mass spectroscopic and gas chromatography-mass spectroscopic characterization. Biochemistry. 1984;23:158–165. - PubMed
-
- Han X, Holtzman DM, McKeel DW., Jr Plasmalogen deficiency in early Alzheimer's disease subjects and in animal models: molecular characterization using electrospray ionization mass spectrometry. J Neurochem. 2001;77:1168–1180. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources